
Agile integration
architecture
Using lightweight integration runtimes to implement
a container-based and microservices-aligned
integration architecture

222Home

Authors

Chapter 1: Integration has changed

Section 1: The Impact of Digital Transformation on Integration

Chapter 2: The journey so far: SOA, ESBs and APIs

Chapter 3: The case for agile integration architecture

How to navigate the book ...

The impact of digital transformation ...

Microservice architecture ..

The forming of the ESB pattern ...

The value of application integration for digital transformation ..

Agile integration architecture ..

What went wrong for the centralized ESB pattern? ..

Aspect 3: Cloud-native integration infrastructure ...

Microservices architecture: A more agile and scalable way to build applications

Aspect 1: Fine-grained integration deployment ...

The API economy and bi-modal IT ..

How has the modern integration runtime changed to accommodate agile integration architecture?

A comparison of SOA and microservice architecture? ..

Aspect 2: Decentralized integration ownership ..

The rise of lightweight runtimes ..

5

7

8

9

12

13

14
16

16

18

20

20

9

22

25

10

10

22

25

24C
o

n
t

e
n

t
s

:

3

C
o

n
t

e
n

t
s

: Chapter 4: Aspect 1: Fine-grained integration deployment

Section 2: Exploring agile integration architecture in detail

What characteristics does the integration runtime need? ..

Granularity ..

Conclusion on fine-grained integration deployment ...

Lessons Learned ...

27

27

27

29

30

31

32

Chapter 6: Aspect 3: Cloud native integration infrastructure

Chapter 5: Aspect 2: Decentralized integration ownership

Cattle not pets ...

Integration pets: The traditional approach ..

Decentralizing integration ownership ..

Does decentralized integration also mean decentralized infrastructure ...

Moving to a decentralized, business-focused team structure ..

Benefits for cloud ...

Big bangs generally lead to big disasters ...

Prioritizing Project Delivery First ..

Enforcing governance in a decentralized structure ...

Evolving the role of the Architect ...

How can we have multi-skilled developers? ..

Conclusions on decentralized integration ownership ...

Lessons Learned ...

Traditional centralized technology-based organization ..

45

46

47

33

33

35

37

47

47

36

38

39

40

41

43

36

Breaking up the centralized ESB ...

3Home

4

C
o

n
t

e
n

t
s

: What’s so different with cattle ...

Pros and cons ...

Application and integration handled by the same team ...

Common infrastructure enabling multi-skilled development ...

Portability: Public, private, multicloud ...

Conclusion on cloud native integration infrastructure ..

Lessons Learned ...

49
50

52

52

55

56

57

58

59

Chapter 8: Agile integration architecture for the Integration Platform

Section 3: Moving Forward with an Agile Integration Architecture

Chapter 7: What path should you take?

What is an integration platform? ..

The IBM Cloud Integration Platform ..

Emerging use cases and the integration platform ...

Appendix One: References

Don’t worry…we haven’t returned to point-to-point ..

Deployment options for fine-grained integration ...

Agile integration architecture and IBM ..

65

72

59

63

60

63

63

63

61

Integration cattle: An alternative lightweight approach ...

4Home

5

	Kim Clark
Integration Architect
kim.clark@uk.ibm.com
Kim is a technical strategist on IBMs integration
portfolio working as an architect providing guidance
to the offering management team on current trends
and challenges. He has spent the last couple of
decades working in the field implementing
integration and process related solutions.

Tony Curcio
Director Application Integration
tcurcio@us.ibm.com

After years of implementing integration solutions
in a variety of technologies, Tony joined the IBM
offering management team in 2008. He now leads
the Application Integration team in working with
customers as they adopt more agile models for
building integration solutions and embrace cloud
as part of their IT landscape.

Nick Glowacki
Technical Specialist
nick.glowacki@ibm.com

Nick is a technical evangelist for IBMs
integration portfolio working as a
technical specialist exploring current
trends and building leading edge solutions.
He has spent the last 5 years working in
the field and guiding a series of teams
through their microservices journey.
Before that he spent 5+ years in various
other roles such as a developer, an architect
and a IBM DataPower specialist. Over the
course of his career he’s been a user of
node, xsl, JSON, Docker, Solr, IBM API
Connect, Kubernetes, Java, SOAP, XML,
WAS, Docker, Filenet, MQ, C++, CastIron,
IBM App Connect, IBM Integration Bus.

Authors

Sincere thanks go to the following people for their
significant and detailed input and review of the material:

Carsten Bornert, Andy Garratt, Alan Glickenhouse,
Rob Nicholson, Brian Petrini, Claudio Tagliabue,
and Ben Thompson.

THANK YOU

5Home

6

Executive Summary

The organization pursuing digital transformation must embrace
new ways to use and deploy integration technologies, so they can
move quickly in a manner appropriate to the goals of multicloud,
decentralization and microservices. The application integration layer
must transform to allow organizations to move boldly in building new
customer experiences, rather than forcing models for architecture
and development that pull away from maximizing the organization’s
productivity.

Many organizations have started embracing agile application techniques
such as microservice architecture and are now starting to see the
benefits of that shift. This approach complements and accelerates
an enterprise’s API strategy. Businesses should also seek to use this
approach to modernize their existing ESB infrastructure to achieve
more effective ways to manage and operate their integration services
in their private or public cloud.

This book explores the merits of what we refer to as agile integration
architecture1 - a container-based, decentralized and microservice-
aligned approach for integration solutions that meets the demands
of agility, scalability and resilience required by digital transformation.

6Home

 1Note that we have used the term “lightweight integration” in the past, but have moved to the more appropriate “agile integration architecture”.

Agile integration architecture enables building, managing and operating effectively and efficiently to achieve the goals of digital
transformation. It includes three distinct aspects that we will explore in detail:

a) Fine-grained integration deployment | b) Decentralized integration ownership and | c) Cloud-native integration infrastructure

77Home

Chapter 1: Integration has changed
Explores the effect that digital transformation
has had on both the application and integration
landscape, and the limitations of previous
techniques.

Chapter 2: The journey so far: SOA, ESBs
and APIs Explores what led us up to this point,
the pros and cons of SOA and the ESB pattern,
the influence of APIs and the introduction of
microservices architecture.

Chapter 3: The case for agile integration
architecture Explains how agile integration
architecture exploits the principles of
microservices architecture to address these
new needs.

Chapter 4: Aspect 1: Fine-grained
integration deployment Addresses the
benefits an organization gains by breaking
up the centralized ESB.

Chapter 5: Aspect 2: Decentralized
integration ownership Discusses how
shifting from a centralized governance and
development practice creates new levels of
agility and innovation.

Chapter 6: Aspect 3: Cloud native
integration infrastructure Provides a
description of how adopting key technologies
and practices from the cloud native application
discipline can provide similar benefits to
application integration.

Chapter 7:
What path should you take?

Explores several ways agile integration
architecture can be approached

Chapter 8: Agile integration
architecture for the Integration
Platform Surveys the wider landscape
of integration capabilities and relates
agile integration architecture to other
styles of integration as part of a holistic
strategy.

How to navigate the book The book is divided into three sections.

Section 1: The Impact of
Digital Transformation on
Integration

Section 2: Exploring agile
integration architecture
in detail

Section 3: Moving
Forward with an Agile
Integration Architecture

8

The impact of digital transformation

The rise of the digital economy, like most of the seismic technology shifts over the past several
centuries, has fundamentally changed not only technology but business as well. The very concept
of “digital economy” continues to evolve. Where once it was just a section of the economy that was
built on digital technologies it has evolved becoming almost indistinguishable from the “traditional
economy” and growing to include almost any new technology such as mobile, the Internet of Things,
cloud computing, and augmented intelligence.

At the heart of the digital economy is the basic need to connect disparate data no matter where
it lives. This has led to the rise of application integration, the need to connect multiple applications
and data to deliver the greatest insight to the people and systems who can act on it. In this section
we will explore how the digital economy created and then altered our concept of application
integration.

- Chapter 1: Integration has changed
Explores the effect that digital transformation has had on both the application and integration
landscape, and the limitations of previous techniques.

- Chapter 2: The journey so far: SOA, ESBs and APIs
Explores what led us up to this point, the pros and cons of SOA and the ESB pattern, the influence
of APIs and the introduction of microservices architecture.

- Chapter 3: The case for agile integration architecture
Explains how agile integration architecture exploits the principles of microservices architecture
to address these new needs.

Section 1:
The Impact of Digital Transformation on Integration

88Home

9

changes in how organizations are building solutions. Progressive IT
shops have sought out, and indeed found, more agile ways to develop
than were typical even just a few years ago.

Home 9

To drive new customer experiences
organizations must tap into an
ever-growing set of applications,
processes and information sources
– all of which significantly expand
the enterprise’s need for
and investment in
integration capabilities.

Chapter 1: Integration has changed

The impact of digital transformation

Over the last two years we’ve seen a tremendous acceleration in the
pace that customers are establishing digital transformation initiatives.
In fact, IDC estimates that digital transformation initiatives represent
a $20 trillion market opportunity over the next 5 years. That is a
staggering figure with respect to the impact across all industries and
companies of all sizes. A primary focus of this digital transformation
is to build new customer experiences through connected experiences
across a network of applications that leverage data of all types.

However, bringing together these processes and information sources
at the right time and within the right context has become increasingly
complicated. Consider that many organizations have aggressively
adopted SaaS business applications which have spread their key data
sources across a much broader landscape. Additionally, new data
sources that are available from external data providers must be
injected into business processes to create competitive differentiation.

Finally, AI capabilities - which are being attached to many
customer-facing applications - require a broad range of information
to train, improve and correctly respond to business events. These
processes and information sources need to be integrated by making
them accessible synchronously via APIs, propagated in near real time
by event streams, and a multitude of other mechanisms, more so
than ever before.

It is no wonder that this growing complexity has increased the
enterprise’s need for and investment in integration capabilities.
The pace of these investments, in both digital transformation
generally and integration specifically, have led to a series of

 2IDC MaturityScape Benchmark: Digital Transformation Worldwide, 2017, Shawn Fitzgerald.

10

2. Expertise of the endpoints:

Each system has its own peculiarities that must
be understood and responded to. Modern
integration includes smarts around complex
protocols and data formats, but it goes much
further than that. It also incorporates
intelligence about the actual objects, business
and functions within the end systems.
Application integration tooling is compassionate
- understanding how to work with each system
distinctly. This knowledge of the endpoint must
include not only errors, but authentication
protocols, load management, performance
optimization, transactionality, idempotence,
and much, much more. By including such
features “in the box”, application integration
yields tremendous gains in productivity over
coding, and arguably a more consistent level
of enterprise-class resiliency.

The value of application integration for digital
transformation

1. Effectively address disparity:

One of the key strengths of integration tooling
is the ability to access data from any system
with any sort of data in any sort of format and
build homogeneity. The application landscape
 is only growing more diverse as organizations
adopt SaaS applications and build new solutions
in the cloud, spreading their data further across
a hybrid set of systems. Even in the world of
APIs, there are variations in data formats and
structures that must be addressed.

Furthermore, every system has subtleties in the
way it enables updates, and surfaces events.
The need for the organization to address
information disparity is therefore growing at
that same pace, and application integration
must remain equipped to address the challenge
of emerging formats.

HomeHome 10

When we consider the agenda for building new customer experiences and focus on how data is
accessed and made available for the services and APIs that power these initiatives, we can clearly
recognize several significant benefits that application integration brings to the table.

11

4. Enterprise-grade artifacts:

Integration flows developed through application
integration tooling inherit a tremendous amount
of value from the runtime. Users can focus on
building the business logic without having to
worry about the surrounding infrastructure.
The application integration runtime includes
enterprise-grade features for error recovery,
fault tolerance, log capture, performance
analysis, message tracing, transactional update
and recovery. Additionally, in some tools the
artifacts are built using open standards and
consistent best practices without requirements
for the IT team to be experts in those domains.

Each of these factors (data disparity,
expert endpoints, innovation through
data, and enterprise grade artifacts)
is causing a massive shift in how an
integration architecture needs to be
conceived, implemented and managed.
The result is that organizations, and
architects in particular, are reconsidering
what integration means in the new digital
age. Enter agile integration architecture,
a container-based, decentralized and
microservices-aligned approach for
integration solutions that meets the
demands of agility, scalability and
resilience required by digital
transformation.

The integration landscape is changing
apace with enterprise and marketplace
computing demands, but how did we get
from SOA and ESBs to modern,
containerized, agile integration
architecture?

HomeHome 11

3. Innovation through data:

Applications in a digital world owe much of their
innovation to their opportunity to combine data
that is beyond their boundaries and create new
meaning from it. This is particularly visible in
microservices architecture, where the ability of
application integration technologies to
intelligently draw multiple sources of data
together is often a core business requirement.
Whether composing multiple API calls together
or interpreting event streams, the main task of
many microservices components is essentially
integration.

Application Integration benefits organizations building digital transformation solutions by
effectively addressing information disparity, providing expert knowledge of application
endpoints, easily orchestrating activities across applications, and lowering the cost of

building expert-level artifacts.

12

Chapter 2: The journey so far: SOA, ESBs and APIs

Before we dive into agile integration
architecture, we first need to understand what
came before in a little more detail. In this
chapter we will briefly look at the challenges
of SOA by taking a closer look at what the ESB
pattern was, how it evolved, where APIs came
onto the scene, and the relationship between all
that and microservices architecture.

Let’s start with SOA and the ESB and what
went wrong.

As we started the millennium, we saw the
beginnings of the first truly cross-platform
protocol for interfaces. The internet, and with it
HTTP, had become ubiquitous, XML was limping
its way into existence off the back of HTML, and
the SOAP protocols for providing synchronous
web service interfaces were just taking shape.
Relatively wide acceptance of these standards
hinted at a brighter future where any system
could discover and talk to any other system via
a real-time synchronous remote procedure call,
without reams of integration code as had been
required in the past.

From this series of events, service-oriented architecture was born. The core purpose
of SOA was to expose data and functions buried in systems of record over well-formed,
simple-to-use, synchronous interfaces, such as web services. Clearly, SOA was about more
than just providing those services, and often involved some significant re-engineering to align
the back-end systems with the business needs, but the end goal was a suite of well-defined
common re-usable services collating disparate systems. This would enable new applications
to be implemented without the burden of deep integration every time, as once the integration
was done for the first time and exposed as a service, it could be re-used by the next application.

However, this simple integration was a one-sided equation. We might have been able to
standardize these protocols and data formats, but the back-end systems of record were
typically old and had antiquated protocols and data formats for their current interfaces.
Figure 1 below shows where the breakdown typically occurred. Something was needed
to mediate between the old system and the new cross-platform protocols.The forming of the ESB

pattern
Sy

st
em

s

of
 R

ec
or

d
En

ga
ge

m
en

t
Ap

pl
ic

at
io

ns

Integration
Runtime

Integration Runtime

Scope of the ESB pattern

Asynchronous integration

Request/response integration

Integration runtime

Enterprise API

Figure 1. Synchronous centralized exposure pattern

Home 12

13

While many large enterprises successfully
implemented the ESB pattern, the term is often
disparaged in the cloud-native space, and
especially in relation to microservices
architecture. It is seen as heavyweight and
lacking in agility. What has happened to make
the ESB pattern appear so outdated?

SOA turned out to be a little more complex than
just the implementation of an ESB for a host of
reasons—not the least of which was the question
of who would fund such an enterprise-wide
program. Implementing the ESB pattern itself
also turned out to be no small task.

The ESB pattern often took the “E” in ESB very
literally and implemented a single infrastructure
for the whole enterprise, or at least one for each
significant part of the enterprise. Tens or even
hundreds of integrations might have been
installed on a production server cluster, and if
that was scaled up, they would be present on
every clone within that cluster. Although this
heavy centralization isn’t required by the ESB
pattern itself, it was almost always present in
the resultant topology. There were good
reasons for this, at least initially: hardware and
software costs were shared, provisioning of the
servers only had to be performed once, and due
to the relative complexity of the software, only
one dedicated team of integration specialists
needed to be skilled up to perform the
development work.

The centralized ESB pattern had the potential to
deliver significant savings in integration costs if
interfaces could be re-used from one project to
the next (the core benefit proposition of SOA).
However, coordinating such a cross-enterprise
initiative and ensuring that it would get
continued funding—and that the funding only
applied to services that would be sufficiently
re-usable to cover their creation costs—proved
to be very difficult indeed. Standards and
tooling were maturing at the same time as the
ESB patterns were being implemented, so the
implementation cost and time for providing a
single service were unrealistically high.

Often, line-of-business teams that were
expecting a greater pace of innovation in
their new applications became
increasingly frustrated with SOA, and by
extension the ESB pattern.

Some of the challenges of a centralized
ESB pattern were:

• Deploying changes could potentially
 destabilize other unrelated interfaces
 running on the centralized ESB.

• Servers containing many integrations
 had to be kept running and patched live
 wherever possible.

This synchronous exposure pattern via web
services was what the enterprise services bus
(ESB) term was introduced for. It’s all in the
name—a centralized “bus” that could provide
web “services” across the “enterprise”.
We already had the technology (the integration
runtime) to provide connectivity to the
back-end systems, coming from the preceding
hub-and-spoke pattern. These integration
runtimes could simply be taught to offer
integrations synchronously via SOAP/HTTP,
and we’d have our ESB.

What went wrong for the
centralized ESB pattern?

ESB patterns have had
issues ensuring continued

funding for cross-enterprise
initiatives since those do

not apply specifically within
the context of a business

initiative.

Home 13

14Home 14

• Topologies for high availability and disaster
 recovery were complex and expensive.

• For stability, servers typically ran many
 versions behind the current release of
 software reducing productivity.

• The integration specialist teams often didn’t
 know much about the applications they were
 trying to integrate with.

• Pooling of specialist integration skilled people
 resulted in more waterfall style engagement
 with application teams.

• Service discovery was immature so
 documentation became quickly outdated.

The result was that creation of services by
this specialist SOA team became a bottleneck
for projects rather than the enabler that it was
intended to be. This typically gave by
association the centralized ESB pattern
a bad name.

Formally, as we’ve described, ESB is an
architectural pattern that refers to the exposure
of services. However, as mentioned above, the
term is often over-simplified and applied to the
integration engine that’s used to implement the
pattern. This erroneously ties the static and
aging centralized ESB pattern with integration
engines that have changed radically over the
intervening time.

Integration engines of today are significantly
more lightweight, easier to install and use, and
can be deployed in more decentralized ways
that would have been unimaginable at the time
the ESB concept was born. As we will see, agile
integration architecture enables us to overcome
the limitations of the ESB pattern.

If you would like a deeper introduction into
where the ESB pattern came from and a
detailed look at the benefits, and the challenges
that came with it, take a look at the source
material for this section in the following article:

http://ibm.biz/FateOfTheESBPaper

External APIs have become an essential part of
the online persona of many companies, and are
at least as important as its websites and mobile
applications. Let’s take a brief look at how that
evolved from the maturing of internal SOA
based services.

SOAP-style RPC interfaces proved complex
to understand and use, and simpler and more
consistent RESTful services provided using
JSON/HTTP became a popular mechanism.

But the end goal was the same: to make
functions and data available via
standardized interfaces so that new
applications could be built on top of them
more quickly.

With the broadening usage of these
service interfaces, both within and
beyond the enterprise, more formal
mechanisms for providing services were
required. It quickly became clear that
simply making something available over
a web service interface, or latterly as a
RESTful JSON/HTTP API, was only part
of the story.

That service needed to be easily
discovered by potential consumers,
who needed a path of least resistance
for gaining access to it and learning how
to use it. Additionally, the providers of the
service or API needed to be able to place
controls on its usage, such as traffic
control and an appropriate security
model. Figure 2 below demonstrates how
the introduction of service/API gateways
effects the scope of the ESB pattern.

The API economy and
bi-modal IT

15

Figure 2. Introduction of service/API gateways internally and externally

The typical approach was to separate the role of service/API exposure out into a separate gateway.
These capabilities evolved into what is now known as API management and enabled simple
administration of the service/API. The gateways could also be specialized to focus on API
management-specific capabilities, such as traffic management (rate/throughput limiting),
encryption/decryption, redaction, and security patterns. The gateways could also be supplemented
with portals that describe the available APIs which enable self-subscription to use the APIs along
with provisioning analytics for both users and providers of the APIs.

While logically, the provisioning of APIs
outside the enterprise looks like just an
extension of the ESB pattern, there are
both significant infrastructural and design
differences between externally facing
APIs and internal services/APIs.

• From an infrastructural point of view,
 it is immediately obvious that the APIs
 are being used by consumers and
 devices that may exist anywhere from
 a geographical and network point of
 view. As a result, it is necessary to
 design the APIs differently to take into
 account the bandwidth available and
 the capabilities of the devices used
 as consumers.

• From a design perspective, we should
 not underestimate the difference in
 the business objectives of these APIs.
 External APIs are much less focused
 on re-use, in the way that internal
 APIs/ services were in SOA, and more
 focused on creating services targeting
 specific niches of potential for new
 business. Suitably crafted channel
 specific APIs provide an enterprise
 with the opportunity to radically
 broaden the number of innovation
 partners that it can work with
 (enabling crowd sourcing of new ideas),

Sy
st

em
s

of
 R

ec
or

d
En

ga
ge

m
en

t
Ap

pl
ic

at
io

ns

Externally exposed services/APIs

Exposure Gateway (external)

Integration Runtime

Exposure Gateway

Internally exposed services/APIs

Scope of the ESB pattern

Asynchronous integration

Request/response integration

Integration runtime

API Gateway

Enterprise API

Public API

Integration
Runtime

Home 15

16

and they play a significant role in the disruption
of industries that is so common today. This
realization caused the birth of what we now call
the API Economy, and it is a well-covered topic
on IBMs “API Economy” blog.

The main takeaway here is that this progression
exacerbated an already growing divide between
the older traditional systems of record that still
perform all the most critical transactions
fundamental to the business, and what became
known as the systems of engagement, where
innovation occurred at a rapid pace, exploring
new ways of interacting with external
consumers. This resulted in
bi-modal IT, where new decentralized,
fast-moving areas of IT needed much greater
agility in their development and led to the
invention of new ways of building applications
using, for example, microservices architecture.

The rise of lightweight
runtimes
Earlier, we covered the challenges of the heavily
centralized integration runtime—hard to safely
and quickly make changes without affecting
other integrations, expensive and complex to
scale, etc.

Microservices architecture:
A more agile and scalable
way to build applications
In order to meet the constant need for IT to
improve agility and scalability, a next logical
step in application development was to break
up applications into smaller pieces and run
them completely independently of one
another. Eventually, these pieces became
small enough that they deserved a name,
and they were termed microservices.

Sound familiar? It should. These were exactly
the same challenges that application
development teams were facing at the same
time: bloated, complex application servers that
contained too much interconnected and cross-
dependent code, on a fragile cumbersome
topology that was hard to replicate or scale.
Ultimately, it was this common paradigm that
led to the emergence of the principles of
microservices architecture. As lightweight
runtimes and application servers such as Node.
js and IBM WAS Liberty were introduced—
runtimes that started in seconds and had tiny
footprints—it became easier to run them on
smaller virtual machines, and then eventually
within container technologies such as Docker.

If you take a closer look at microservices
concepts, you will see that it has a much
broader intent than simply breaking
things up into smaller pieces. There are
implications for architecture, process,
organization, and more—all focused on
enabling organizations to better use
cloud-native technology advances to
increase their pace of innovation.

However, focusing back on the core
technological difference, these small
independent microservices components
can be changed in isolation to create
greater agility, scaled individually to
make better use of cloud-native
infrastructure, and managed more
ruthlessly to provide the resilience
required by 24/7 online applications.
Figure 3 below visualizes the
microservices architecture we’ve just
described.

1616Home

17

In theory, these principles could be used anywhere. Where we see them most commonly is in the
systems of engagement layer, where greater agility is essential. However, they could also be used
to improve the agility, scalability, and resilience of a system of record—or indeed anywhere else in
the architecture, as you will see as we discuss agile integration architecture in more depth.

Without question, microservices principles can offer significant benefits under the right
circumstances. However, choosing the right time to use these techniques is critical, and getting
the design of highly distributed components correct is not a trivial endeavor.

Not least is your challenge of deciding the
shape and size of your microservices
components. Add to that equally critical
design choices around the extent to
which you decouple them. You need to
constantly balance practical reality with
aspirations for microservices-related
benefits. In short, your microservices-
based application is only as agile and
scalable as your design is good, and your
methodology is mature.

Sy
st

em
s

of
 R

ec
or

d

Integration Runtime

Exposure Gateway

Microservice application boundary

Asynchronous integration

Request/response integration

Integration runtime

API Gateway

Lightweight language runtime

Enterprise API

Public API

Integration
Runtime

En
ga

ge
m

en
t

Ap
pl

ic
at

io
ns

M
ic

ro
se

rv
ic

e
Ap

pl
ic

at
io

ns

Microservice
Applications

Externally exposed services/APIs

Exposure Gateway (external)

Figure 3. Microservices architecture: A new way to build applications

1717Home

1818

Microservices inevitably gets compared to SOA in architectural discussions, not least because they
share many words in common. However, as you will see, this comparison is misleading at best, since
the terms apply to two very different scopes. Figure 4 demonstrates how microservices are
application-scoped within the SOA enterprise service bus.

Service-oriented architecture is an enterprise-wide initiative to create re-usable, synchronously
available services and APIs, such that new applications can be created
more quickly incorporating data from other systems.

Microservices architecture, on the other hand, is an option for how you might choose to write an
individual application in a way that makes that application more agile, scalable, and resilient.

It’s critical to recognize this difference in
scope, since some of the core principles
of each approach could be completely
incompatible if applied at the same
scope. For example:

A comparison of SOA and microservice architecture

Figure 4. SOA is enterprise scoped, microservices architecture is application scoped

Home

Service-oriented
architecture is an
enterprise-wide

initiative.

Microservices
architecture is an

option for how you
might choose to write

an
individual application.

19

So, in summary, SOA has an enterprise scope
and looks at how integration occurs between
applications. Microservices architecture has
an application scope, dealing with how the
internals of an application are built. This is a
relatively swift explanation of a much more
complex debate, which is thoroughly explored
in a separate article:
http://ibm.biz/MicroservicesVsSoa

However, we have enough of the key concepts
to now delve into the various aspects of agile
integration architecture.

• Re-use: In SOA, re-use of integrations is
 the primary goal, and at an enterprise
 level, striving for some level of re-use is
 essential. In microservices architecture,
 creating a microservices component that is
 re-used at runtime throughout an
 application results in dependencies that
 reduce agility and resilience. Microservices
 components generally prefer to re-use
 code by copy and accept data duplication
 to help improve decoupling between one
 another.

• Synchronous calls: The re-usable services
 in SOA are available across the enterprise
 using predominantly synchronous
 protocols such as RESTful APIs. However,
 within a microservice application,
 synchronous calls introduce real-time
 dependencies, resulting in a loss of
 resilience, and also latency, which impacts
 performance. Within a microservices
 application, interaction patterns based on
 asynchronous communication are
 preferred, such as event sourcing where a
 publish subscribe model is used to enable
 a microservices component to remain up
 to date on changes happening to the data
 in another component.

• Data duplication: A clear aim of providing
 services in an SOA is for all applications
 to synchronously get hold of, and make
 changes to, data directly at its primary
 source, which reduces the need to
 maintain complex data synchronization
 patterns. In microservices applications,
 each microservice ideally has local access
 to all the data it needs to ensure its
 independence from other microservices,
 and indeed from other applications—even
 if this means some duplication of data in
 other systems. Of course, this duplication
 adds complexity, so it needs to be
 balanced against the gains in agility and
 performance, but this is accepted as a
 reality of microservices design.

Home 19

20

Chapter 3: The case for agile integration architecture
Home 20

Let’s briefly explore why
microservices concepts
have become so popular
in the application space.
We can then quickly see
how those principles can
be applied to the
modernization of
integration architecture.

Microservices architecture
Microservices architecture is an alternative approach to structuring applications. Rather
than an application being a large silo of code all running on the same server, an application
is designed as a collection of smaller, completely independently running components.
This enables the following benefits, which are also illustrated in Figure 5 below:

Figure 5 Comparison of siloed and microservices-based applications

They are small enough to be understood
completely in isolation and changed independently

greater Agility

Their resource usage can be truly tied to the
business model

elastic Scalability

With suitable decoupling, changes to one
microservice do not affect others at runtime

discrete Resilience

21

Microservice components are often made from
pure language runtimes such as Node.js or Java,
but equally they can be made from any suitably
lightweight runtime. The key requirements
include that they have a simple dependency-
free installation, file system based deploy, start/
stop in seconds and have strong support for
container-based infrastructure.

Microservices architectures
lead to the primary benefits

of greater agility, elastic
scalability, and discrete

resilience.

As with any new approach there are challenges
too, some obvious, and some more subtle.
Microservices are a radically different approach
to building applications. Let’s have a brief look
at some of the considerations:

• Greater overall complexity: Although the
 individual components are potentially simpler,
 and as such they are easier to change and
 scale, the overall application is inevitably a
 collection of highly distributed individual parts.

• Learning curve on cloud-native
 infrastructure: To manage the increased
 number of components, new technologies and
 frameworks are required including service
 discovery, workload orchestration, container
 management, logging frameworks and more.
 Platforms are available to make this easier, but
 it is still a learning curve.

• Different design paradigms:
 The microservices application architecture
 requires fundamentally different approaches
 to design. For example, using eventual
 consistency rather than transactional
 interactions, or the subtleties of asynchronous
 communication to truly decouple components.

• DevOps maturity: Microservices require a
 mature delivery capability. Continuous
 integration, deployment, and fully automated

Microservices architecture enables developers
to make better use of cloud native infrastructure
and manage components more ruthlessly,
providing the resilience and scalability required
by 24/7 online applications. It also improves
ownership in line with DevOps practices whereby
a team can truly take responsibility for a whole
microservice component throughout its lifecycle
and hence make changes at a higher velocity.

tests are a must. The developers who
write code must be responsible for it in
production. Build and deployment chains
need significant changes to provide the
right separation of concerns for a
microservices environment.

Microservices architecture is not the
solution to every problem. Since there is
an overhead of complexity with the
microservices approach, it is critical to
ensure the benefits outlined above
outweigh the extra complexity. However,
if applied judiciously it can provide order
of magnitude benefits that would be hard
to achieve any other way.

Microservices architecture discussions are
often heavily focused on alternate ways
to build applications, but the core ideas
behind it are relevant to all software
components, including integration.

Home 21

22

If what we’ve learned from microservices
architecture means it sometimes makes sense
to build applications in a more granular
lightweight fashion, why shouldn’t we apply
that to integration to?

Integration is typically deployed in a very siloed
and centralized fashion such as the ESB pattern.
What would it look like if we were to re-visit that
in the light of microservices architecture?
It is this alternative approach that we call
“agile integration architecture”.

The centralized deployment of
integration hub or enterprise services
bus (ESB) patterns where all integrations
are deployed to a single heavily nurtured
(HA) pair of integration servers has been
shown to introduce a bottleneck for
projects. Any deployment to the shared
servers runs the risk of destabilizing
existing critical interfaces. No individual
project can choose to upgrade the
version of the integration middleware
to gain access to new features.

We could break up the enterprise-wide
ESB component into smaller more
manageable and dedicated pieces.
Perhaps in some cases we can even get
down to one runtime for each interface
we expose.

Agile integration architecture Aspect 1:
Fine-grained integration
deployment

There are three related, but separate aspects
to agile integration architecture:

• Aspect 1:
 Fine-grained integration
 deployment.
 What might we gain by breaking out the
 integrations in the siloed ESB into separate
 runtimes?

• Aspect 2:
 Decentralized integration
 ownership.

 How should we adjust the organizational
 structure to better leverage a more
 fine-grained approach?

• Aspect 3:
 Cloud native integration
 infrastructure.
 What further benefits could we gain by a
 fully cloud-native approach to integration.

Although these each have dedicated chapters,
it’s worth taking the time to summarize them
at a conceptual level here.

Home 22

Agile integration architecture
is defined as

“a container-based,
decentralized and

microservices-aligned
architecture for integration

solutions”.

23

These “fine-grained integration deployment” patterns provide specialized, right-sized containers,
offering improved agility, scalability and resilience, and look very different to the centralized ESB
patterns of the past. Figure 6 demonstrates in simple terms how a centralized ESB differs from
fine-grained integration deployment.B patterns of the past.

Fine-grained integration deployment draws on the benefits of a microservices architecture we listed in
the last section: agility, scalability and resilience:

Different teams can work on integrations
independently without deferring to a
centralized group or infrastructure that
can quickly become a bottleneck.
Individual integration flows can be
changed, rebuilt, and deployed
independently of other flows, enabling
safer application of changes and
maximizing speed to production.

Individual flows can be scaled on their
own, allowing you to take advantage of
efficient elastic scaling of cloud
infrastructures.

Home 23

Figure 6: Simplistic comparison of a centralized ESB to fine-grained integration deployment

Consumers

Centralized ESB Fine-grained integration
deployment

Integrations

Providers

Agility:

Scalability:

Resilience:

Isolated integration flows that are
deployed in separate containers cannot
affect one another by stealing shared
resources, such as memory,
connections, or CPU.

24Home 24

Breaking the single ESB runtime up into many
separate runtimes, each containing just a few
integrations is explored in detail in “Chapter 4:
Aspect 1: Fine grained integration deployment”

A significant challenge faced by service-
oriented architecture was the way that it
tended to force the creation of central
integration teams, and infrastructure to
create the service layer.

This created ongoing friction in the pace at
which projects could run since they always
had the central integration team as a
dependency. The central team knew their
integration technology well, but often didn’t
understand the applications they were
integrating, so translating requirements
could be slow and error prone.

Many organizations would have preferred
the application teams own the creation of their
own services, but the technology and
infrastructure of the time didn’t enable that.

Aspect 2:
Decentralized
integration ownership

The move to fine-grained integration
deployment opens a door such that ownership
of the creation and maintenance of integrations
can be distributed.

It’s not unreasonable for business application
teams to take on integration work, streamlining
the implementation of new capabilities. This shift
is discussed in more depth in “Chapter 5:
Aspect 2: Decentralized integration ownership”.

25Home 25

Clearly, agile integration architecture requires
that the integration topology be deployed very
differently. A key aspect of that is a modern
integration runtime that can be run in a
container-based environment and is well suited
to cloud-native deployment techniques. Modern
integration runtimes are almost unrecognizable
from their historical peers. Let’s have a look at
some of those differences:

• Fast lightweight runtime: They run in
 containers such as Docker and are
 sufficiently lightweight that they can be
 started and stopped in seconds and can be
 easily administered by orchestration
 frameworks such as Kubernetes.

• Dependency free: They no longer require
 databases or message queues, although
 obviously, they are very adept at
 connecting to them if they need to.

• File system based installation:
 They can be installed simply by laying
 their binaries out on a file system and
 starting them up-ideal for the layered
 file systems of Docker images.

• DevOps tooling support: The runtime
 should be continuous integration and
 deployment-ready. Script and property
 file-based install, build, deploy, and
 configuration to enable “infrastructure
 as code” practices. Template scripts for
 standard build and deploy tools should
 be provided to accelerate inclusion into
 DevOps pipelines.

• API-first: The primary communication
 protocol should be RESTful APIs.
 Exposing integrations as RESTful APIs
 should be trivial and based upon
 common conventions such as the Open
 API specification. Calling downstream
 RESTful APis should be equally trivial,
 including discovery via definition files.

• Digital connectivity: In addition to
 the rich enterprise connectivity that
 has always been provided by integration
 runtimes, they must also connect to
 modern resources.

How has the modern
integration runtime changed
to accommodate agile
integration architecture?

Integration runtimes have changed dramatically
in recent years. So much so that these
lightweight runtimes can be used in truly cloud-
native ways. By this we are referring to their
ability to hand off the burden of many of their
previously proprietary mechanisms for cluster
management, scaling, availability and to the
cloud platform in which they are running.

This entails a lot more than just running them in
a containerized environment. It means they
have to be able to function as “cattle not pets,”
making best use of the orchestration
capabilities such as Kubernetes and many other
common cloud standard frameworks.

We expand considerably on the concepts in
“Chapter 6: Aspect 3: Cloud native integration
infrastructure”.

Aspect 3:
Cloud-native
integration infrastructure

26Home 26

Modern integration runtimes are well suited to the three aspects of agile integration architecture:
fine-grained deployment, decentralized ownership, and true cloud-native infrastructure. Before we
turn our attention to these aspects in more detail, we will take a more detailed look at the SOA
pattern for those who may be less familiar with it, and explore where organizations have struggled
to reach the potential they sought.

 For example, NoSQL databases
 (MongoDb and Cloudant etc.), and
 Messaging services such as Kafka.
 Furthermore, they need access to a rich
 catalogue of application intelligent
 connectors for SaaS (software as a service)
 applications such as Salesforce.

• Continuous delivery: Continuous delivery
 is enabled by command-line interfaces and
 template scripts that mesh into standard
 DevOps pipeline tools. This further reduces
 the knowledge required to implement
 interfaces and increases the pace of delivery.

• Enhanced tooling: Enhanced tooling for
 integration means most interfaces can be
 built by configuration alone, often by
 individuals with no integration background.
 With the addition of templates for common
 integration patterns, integration best practices
 are burned into the tooling, further
 simplifying the tasks. Deep integration
 specialists are less often required, and some
 integration can potentially be taken on by
 application teams as we will see in the next
 section on decentralized integration.

27

Section 2:
Exploring agile integration
architecture in detail

If it makes sense to build applications in a more granular fashion, why shouldn’t we apply this
idea to integration, too? We could break up the enterprise-wide centralized ESB component into
smaller, more manageable, dedicated components. Perhaps even down to one integration
runtime for each interface we expose, although in many cases it would be sufficient to bunch
the integrations as a handful per component.

Chapter 4: Aspect 1:
Fine-grained integration deployment

Breaking up the centralized ESB

If the large centralized ESB pattern containing all the integrations for the enterprise is reducing
agility for all the reasons noted previously, then why not break it up into smaller pieces? This
section explores why and how we might go about doing that.

Now that you have been introduced to the
concept of agile integration architecture we are
going to dive into greater detail on its three
main aspects, looking at their characteristics
and presenting a real-life scenario.

- Chapter 4:
 Aspect 1: Fine-grained integration
 deployment
 Addresses the benefits an
 organization gains by breaking up the
 centralized ESB

- Chapter 5:
 Aspect 2: Decentralized integration
 ownership
 Discusses how shifting from a
 centralized governance and development
 practice creates new levels of agility and
 innovation.

- Chapter 6:
 Aspect 3: Cloud native integration
 infrastructure
 Provides a description of how
 adopting key technologies and practices from
 the cloud native application discipline can
 provide similar benefits to application integration.

Home 27

28

The heavily centralized ESB pattern can be broken up in this way, and so can the older hub and spoke
pattern. This makes each individual integration easier to change independently, and improves agility,
scaling, and resilience.

Figure 7 shows the result of breaking up the ESB into separate, independently maintainable and
scalable components.

Home 28

Figure 7: Breaking up the centralized ESB into independently maintainable and scalable pieces

Fine grained integration
deployment allows you
to make a change to an
individual integration

with complete
confidence that you will

not introduce any
instability into the

environment

Sy
st

em
s

of
 R

ec
or

d
En

ga
ge

m
en

t
Ap

pl
ic

at
io

ns

M
ic

ro
se

rv
ic

e
Ap

pl
ic

at
io

ns

Microservice
Applications

Externally exposed services/APIs

Exposure Gateway (external)

“Fine-grained integration
deployment”

Microservice application boundary

Asynchronous integration

Request/response integration

Lightweight integration runtime

API Gateway

Lightweight language runtime

Enterprise API

Public API

29Home 29

To be able to be used for fine-grained
deployment, what characteristics does a modern
integration runtime need?

• Fast, light integration runtime.
 The actual runtime is slim, dispensing with
 hard dependencies on other components
 such as databases for configuration, or
 being fundamentally reliant on a specific
 message queuing capability. The runtime
 itself can now be stopped and started in
 seconds, yet none of its rich functionality
 has been sacrificed. It is totally reasonable
 to consider deploying a small number of
 integrations on a runtime like this and then
 running them independently rather than
 placing all integration on a centralized
 single topology.

 Installation is equally minimalist
 and straightforward requiring little
 more than laying binaries out on a
 file system.

• Virtualization and containerization.
 The runtime should actively support
 containerization technologies such
 as Docker and container
 orchestration capabilities such as
 Kubernetes, enabling non-functional
 characteristics such as high
 availability and elastic scalability to
 be managed in the standardized
 ways used by other digital
 generation runtimes, rather than
 relying on proprietary topologies
 and technology. This enables new
 runtimes to be introduced
 administered and scaled in
 well-known ways without requiring
 proprietary expertise.

We typically call this pattern fine-grained
integration deployment (and a key aspect of
agile integration architecture), to differentiate
it from more purist microservices application
architectures. We also want to mark a distinction
from the ESB term, which is strongly associated
with the more cumbersome centralized
integration architecture.

This approach allows you to make a change to an
individual integration with complete confidence
that you will not introduce any instability into the
environment on which the other integrations are
running. You could choose to use a different
version of the integration runtime, perhaps to
take advantage of new features, without forcing
a risky upgrade to all other integrations. You
could scale up one integration completely
independently of the others, making extremely
efficient use of infrastructure, especially when
using cloud-based models.

There are of course considerations to be worked
through with this approach, such as the
increased complexity with more moving parts.
Also, although the above could be achieved
using virtual machine technology, it is likely that
the long-term benefits would be greater if you
were to use containers such as Docker, and
orchestration mechanisms such as Kubernetes.
Introducing new technologies to the integration
team can add a learning curve. However, these
are the same challenges that an enterprise
would already be facing if they were exploring
microservices architecture in other areas, so
that expertise may already exist within the
organization.

What characteristics does
the integration runtime
need?

30

• Stateless
 The runtime needs to able to run
 statelessly. In other words, runtimes
 should not be dependent on, or even
 aware of one another. As such they can be
 added and taken away from a cluster freely
 and new versions of interfaces can be
 deployed easily. This enables the container
 orchestration to manage scaling, rolling
 deployments, A/B testing, canary tests and
 more with no proprietary knowledge of the
 underlying integration runtime. This stateless
 aspect is essential if there are going to be
 more runtimes to manage in total.

• Cloud-first
 It should be possible to immediately explore a
 deployment without the need to install any
 local infrastructure. Examples include providing
 a cloud based managed service whereby
 integrations can be immediately deployed,
 with a low entry cost, and an elastic cost model.
 Quick starts should be available for simple
 creation of deployment environments on
 major cloud vendors’ infrastructures.

This provides a taste of how different the integration runtimes of today are from those of the past.

IBM App Connect Enterprise (formerly known as IBM Integration Bus) is a good example of
such a runtime. Integration runtimes are not in themselves an ESB; ESB is just one of the
patterns they can be used for. They are used in a variety of other architectural patterns too,
and increasingly in fine-grained integration deployment.

A glaring question then remains: how granular should the decomposition of the integration flows
be? Although you could potentially separate each integration into a separate container, it is
unlikely that such a purist approach would make sense. The real goal is simply to ensure that
unrelated integrations are not housed together. That is, a middle ground with containers that
group related integrations together (as shown in Figure 8) can be sufficient to gain many of the
benefits that were described previously.

Granularity

Figure 8: Related integrations grouped together can lead to many benefits.

Home 30

31

You target the integrations that need the most
independence and break them out on their own.
On the flip side, keep together flows that, for
example, share a common data model for
cross-compatibility. In a situation where
changes to one integration must result in
changes to all related integrations, the benefits
of separation may not be so relevant.

For example, where any change to a shared data
model must be performed on all related
integrations, and they would all need to be
regression tested anyway, having them as
separate entities may only be of minimal value.
However, if one of those related integrations has
a very different scaling profile, there might be a
case for breaking it out on its own. It’s clear that
there will always be a mixture of concerns to
consider when assessing granularity.

Fine-grained deployment allows you to reap some of the benefits of microservices architecture
in your integration layer enabling greater agility because of infrastructural decoupled
components, elastic scaling of individual integrations and an inherent improvement in
resilience from the greater isolation.

Conclusion on fine-grained integration deployment

Home 31

The right level of granularity
is to allow decomposition of
the integration flows to the

point where unrelated
integrations are not housed

together.

32

The problem

While this seemed like a reasonable approach,
it created issues with the application
development team. Adding one element to
the model took, at best, two weeks. The
application team had to submit the request,
then attend the CoE meeting, then if agreed
to that model would be released the following
week. From there, the application dev team
would get the model which would contain their
change (and any other change any other team
had submitted for between their last version
and the current version). Then would be able
to start work implementing business code.

After some time, these two week procedural
delays began to add up. From this point we
need to strongly consider if the value of the
highly-governed, enterprise message model is
worth that investment, and if the consistency
gained through the CoE team is worth the
delays. On the benefit side the CoE team can
now create and maintain standards and keep
a level of consistency, on the con side that
consistency is incurring a penalty if we look
at it from the lens of time to market.

A real-life scenario The solution

Let’s examine an organization where an agile
methodology was adopted, a cloud had been
chosen but who still had a centralized team that
maintained an enterprise-wide data model and
ESB. This team realized that they struggled with
even a simple change of adding a new element
to the enterprise message model and the
associated exposed endpoint.

The team that owned the model took requests
from application development teams. Since it
wasn’t reasonable for the modelling CoE (Center
of Excellence) team to take requests constantly,
they met once a week to talk about changes and
determine if the changes would be agreed to.
To reduce change frequency, the model was
released once a week with whatever updates
had been accepted by the CoE. After the model
was changed the ESB team would take action
on any related changes. Because of the
enterprise nature of the ESB this would then
again have to be coordinated with other builds,
other application needs and releases.

The solution was to break the data
model into bounded contexts based on
business focus areas. Furthermore the
integrations were divided up into groups
based on those bounded contexts too,
each running on separate infrastructure.
This allowed each data model and its
associated integrations to evolve
independently as required yet still
providing consistency across a now
more narrow bounded context. It is
worth noting that although this provided
improved autonomy with regard to data
model changes, the integration team
were still separate from the application
teams, creating scheduling and
requirements handover latencies.
In the next section, we will discuss the
importance of exploring changes to the
organizational boundaries too.

Lessons Learned

Home 32

33

We can take what we’ve done in “Aspect 1: Fine
grained integration deployment” a step further.
If you have broken up the integrations into
separate decoupled pieces, you may opt to
distribute those pieces differently from an
ownership and administration point of view as well.

The microservices approach encourages teams
to gain increasing autonomy such that they can
make changes confidently at a more rapid pace.
When applied to integration, that means
allowing the creation and maintenance of
integration artifacts to be owned directly by
application teams rather than by a single
separate centralized team. This distribution of
ownership is often referred to under the broader
topic of “decentralization” which is a common
theme in microservices architecture.

It is extremely important to recognize that
decentralization is a significant change for most
organizations. For some, it may be too different
to take on board and they may have valid
reasons to remain completely centrally
organized. For large organizations, it is unlikely
it will happen consistently across all domains.
It is much more likely that only specific pockets
of the organization will move to this approach -
where it suits them culturally and helps them
meet their business objectives.

We’ll discuss what effect that shift would have
on an organization, and some of the pros and
cons of decentralization.

In the strongly layered architecture described
in “Chapter 3: The journey so far:

SOA, ESBs and APIs”, technology islands such
as integration had their own dedicated, and
often centralized teams. Often referred to as
the “ESB team” or the “SOA team”, they owned
the integration infrastructure, and the creation
and maintenance of everything on it.
We could debate Conway’s Law as to whether
the architecture created the separate team or
the other way around, but the more important
point is that the technology restriction of
needing a single integration infrastructure has
been lifted.

We can now break integrations out into
separate decoupled (containerized) pieces,
each carrying all the dependencies they need,
as demonstrated in Figure 9 below.

Chapter 5: Aspect 2: Decentralized integration
ownership

Decentralizing integration
ownership

Home 33

34Home 34

Figure 9: Decentralizing integration to the application teams

Technologically, there may be little difference between this diagram and the preceding fine-grained
integration diagram in the previous chapter. All the same integrations are present, they’re just in a
different place on the diagram. What’s changed is who owns the integration components. Could you
have the application teams take on integration themselves? Could they own the creation and
maintenance of the integrations that belong to their applications? This is feasible because not only
have most integration runtimes become more lightweight, but they have also become significantly
easier to use. You no longer need to be a deep integration specialist to use a good modern
integration runtime. It’s perfectly reasonable that an application developer could make good use
of an integration runtime.

You’ll notice we’ve also shown the
decentralization of the gateways to
denote that the administration of the
API’s exposure moves to the application
teams as well.

There are many potential advantages to
this decentralized integration approach:

• Expertise: A common challenge for
 separate SOA teams was that they
 didn’t understand the applications
 they were offering through services.
 The application teams know the data
 structures of their own applications
 better than anyone.

• Optimization: Fewer teams will be
 involved in the end-to-end
 implementation of a solution,
 significantly reducing the cross-team
 chatter, project delivery timeframe,
 and inevitable waterfall development
 that typically occurs in these cases.

• Empowerment: Governance teams
 were viewed as bottle necks or
 checkpoints that had to be passed.
 There were artificial delays that were
 added to document, review then
 approve solutions.

Microservice application boundary

Asynchronous integration

Request/response integration

Lightweight integration runtime

API Gateway

Lightweight language runtime

Enterprise API

Public API

Sy
st

em
s

of
 R

ec
or

d
En

ga
ge

m
en

t
Ap

pl
ic

at
io

ns

M
ic

ro
se

rv
ic

e
Ap

pl
ic

at
io

ns

Externally exposed services/APIs

Exposure Gateway (external)

35

The goal was to create consistency, the con is
that to create that consistency took time. The
fundamental question is “does the consistency
justify the additional time?” In decentralization,
the team is empowered to implement the
governance policies that are appropriate to
their scope.

Let’s just reinforce that point we made in the
introduction of this chapter. While
decentralization of integration offers potential
unique benefits, especially in terms of overall
agility, it is a significant departure from the way
many organizations are structured today. The
pros and cons need to be weighted carefully, and
it may be that a blended approach where only
some parts of the organization take on this
approach is more achievable.

To re-iterate, decentralized integration is
primarily an organizational change, not a
technical one. But does decentralized integration
imply an infrastructure change? Possibly, but
not necessarily.

The move toward decentralized ownership of
integrations and their exposure does not
necessarily imply a decentralized
infrastructure. While each application team
clearly could have its own gateways and
container orchestration platforms, this is not a
given. The important thing is that they can
work autonomously.

API management is very commonly
implemented in this way: with a shared
infrastructure (an HA pair of gateways
and a single installation of the API
management components), but with
each application team directly
administering their own APIs as if they
had their own individual infrastructure.
The same can be done with the
integration runtimes by having a
centralized container orchestration
platform on which they can be deployed
but giving application teams the ability
to deploy their own containers
independently of other teams.

Does decentralized
integration also mean
decentralized infrastructure

Home 35

Decentralized integration
increases project expertise,

focus and team
empowerment.

36

In the following Figure 10, we show how in a traditional SOA architecture, people were
aligned based to their technology stack.

It is worth noting that this decentralized
approach is particularly powerful when moving
to the cloud. Integration is already implemented
in a cloud-friendly way and aligned with systems
of record. Integrations relating to the application
have been separated out from other unrelated
integrations so they can move cleanly with the
application. Furthermore, container-based
infrastructures, if designed using cloud-ready
principles and an infrastructure-as-code
approach, are much more portable to cloud and
make better use of cloud-based scaling and cost
models. With the integration also owned by the
application team, it can be effectively packaged
as part of the application itself.

In short, decentralized integration significantly
improves your cloud readiness.

We are now a very long way from the centralized
ESB pattern—indeed, the term makes no sense
in relation to this fully decentralized pattern—
but we’re still achieving the same intent of
making application data and functions available
for re-use by other applications across and even
beyond the enterprise.

Benefits for cloud Traditional centralized technology-based organization

Home 36

Figure 10: Alignment of IT staff according to technology stack in an ESB environment.

En
ga

ge
m

en
t

Ap
pl

ic
at

io
ns

M
ic

ro
se

rv
ic

e
Ap

pl
ic

at
io

ns

Externally exposed services/APIs

Exposure Gateway (external)

Exposure Gateway

Sy
st

em
s

of
 R

ec
or

d

Integration Runtime

Integration Runtime

Microservice application boundary

Asynchronous integration

Request/response integration

Lightweight integration runtime

API Gateway

Lightweight language runtime

Enterprise API

Public API

Scope of the ESB pattern

37

A high level organizational chart would look
something like this:

• A front-end team, which would be focused
 on end user’s experience and focused on
 creating UIs.

• An ESB team, which would be focused on
 looking at existing assets that could be
 provided as enterprise assets. This team
 would also be focused on creating the
 services that would support the UIs from
 the front-end team.

• A back-end team, which would focus on the
 implementation of the enterprise assets
 surfaced through the ESB. There would be
 many teams here working on many different
 technologies. Some might be able to provide
 SOAP interfaces created in Java, some would
 provide COBOL copybooks delivered over MQ,
 yet others would create SOAP services
 exposed by the mainframe and so on.

This is an organizational structure with an
enterprise focus which allows a company to
rationalize its assets and enforce standards
across a large variety of assets. The downside
of this focus is that time to market for an
individual project was compromised for the
good of the enterprise.

A simple example of this would be a front-end
team wanting to add a single new element to
their screen. If that element doesn’t exist on an
existing SOAP service in the ESB then the ESB
team would have to get engaged. Then,
predictably, this would also impact the back-end
team who would also have to make a change.
Now, generally speaking, the code changes at
each level were simple and straightforward, so
that wasn’t the problem.

The problem was allocating the time for
developers and testers to work on it. The
project managers would have to get involved
to figure out who on their teams had capacity
to add the new element, and how to schedule
the push into the various environments. Now,
if we scale this out we also have competing
priorities. Each project and each new element
would have to be vetted and prioritized, and all
this is what took the time. So now we are in a
situation where there is a lot of overhead, in
terms of time, for a very simple and
straightforward change.

The question is whether the benefits that we
get by doing governance, and creating common
interfaces is worth the price we pay for the
operational challenges? In the modern digital
world of fast-paced innovation we must think
of a new way to enforce standards while
allowing teams to reduce their time to market.

We’re trying to reduce the time between
the business ask and production
implementation, knowing that we may
rethink and reconsider how we implement
the governance processes that were once
in place. Let’s now consider the concept of
microservices and that we’ve broken our
technical assets down into smaller pieces.
If we don’t consider reorganizing, we
might actually make it worse! We’ll
introduce even more hand-offs as the
lines of what is an application and who
owns what begin to blur. We need to
re-think how we align people to technical
assets. In Figure 11, give you a preview of
what that new alignment might look like.

Instead of people being centrally aligned
to the area of the architecture they work
on, they’ve been decentralized, and
aligned to business domains. In the past,
we had a front-end team, services teams,
back-end teams and so on; now we have
a number of business teams. For example,
an Account team which works on anything
related to accounts regardless whether or
not the accounts involve a REST API,
a microservice, or a user interface.

Moving to a decentralized,
business-focused team
structure

Home 37

38

The teams need to have cross-cutting skills since their goal is to deliver business results, not
technology. To create that diverse skill set, it’s natural to start by picking one person from the
old ESB team, one person from the old front-end team, and another from the back-end team.
It is very important to note that this does not need to be a big bang re-org across the entire
enterprise, this can be done application by application, and piece by piece.

Home 38

The concept of “big bangs generally lead
to big disasters” isn’t only applicable to
code or applications. It’s applicable to
organizational structure changes as well.
An organization’s landscape will be a
complex heterogeneous blend of new
and old. It may have a “move to cloud”
strategy, yet it will also contain stable
heritage assets. The organizational
structure will continue to reflect that
mixture. Few large enterprises will have
the luxury of shifting entirely to a
decentralized organizational structure,
nor would they be wise to do so.

For example, if there is a stable
application and there is nothing major
on the road map for that application, it
wouldn’t make sense to decompose that
application into microservices. Just as
that wouldn’t make sense, it also would
not make sense to reorganize the team
working on that application.
Decentralization need only occur where
the autonomy it brings is required by the
organization, to enable rapid innovation
in a particular area.

Big bangs generally lead
to big disasters

Figure 11: Decentralized IT staff structures.

Externally exposed services/APIs

Exposure Gateway (external)

M
ic
ro
se

rv
ic
es

ap
pl
ic
at
io
n

En
ga

ge
m

en
t

ap
pl

ic
at

io
ns

Sy
st

em
s

of
 R

ec
or

d

39

Now let’s consider what this change does to an
individual and what they’re concerned about.

The first thing you’ll notice about the next
diagram is that it shows both old and new
architectural styles together. This is the reality
for most organizations. There will be many
existing systems that are older, more resistant
to change, yet critical to the business. Whilst
some of those may be partially or even
completely re-engineered, or replaced, many
will remain for a long time to come. In addition,
there is a new wave of applications being built
for agility and innovation using architectures
such as microservices. There will be new
cloud-based software-as-a-service applications
being added to the mix too.

If we look into the concerns and motivations of the people involved, they fall into two very
different groups, illustrated in Figure 12.

Home 39

We certainly do not anticipate reorganization
at a company level in its entirety overnight.
The point here is more that as the architecture
evolves, so should the team structure working
on those applications, and indeed the
integration between them. If the architecture
for an application is not changing and is not
foreseen to change there is no need reorganize
the people working on that application.

Prioritizing Project
Delivery First

Re-use �

Quality �

Stability �

Support �

Monitoring

�Governance

�Performance�

Fixed requirements

Agility �

Velocity �

Autonomy �Freemium

�Cloud native �

Vendor agnostic

�Developer is king

�Rapid prototyping

�Short learning curve

What’s its track

recor �Is the vendor

trustworthy �Will it

serve me long term

�What do the

analysts think of it

�Could I get sacked

for a risky choice

Can I start small

�Can it help me today

�What do my peers

think of it �Does it

have an active

community �Are my

skills relevant to

my peers

A developer of traditional applications cares
about stability and generating code for
re-use and doing a large amount of up-front
due diligence. The agile teams on the other
hand have shifted to a delivery focus. Now,
instead of thinking about the integrity of the
enterprise architecture first and being willing
to compromise on the individual delivery
timelines, they’re now thinking about
delivery first and willing to compromise on
consistency.

Agile teams are more
concerned with the

project delivery than
they are with the

enterprise architecture
integrity.

Figure 12: Traditional developers versus a gile teams

Engagement
applications

Tr
ad

iti
on

al
In

te
gr

at
io

n
Sy

st
em

s
of

 R
ec

or
d

Sa
aS

Ap
pl

ic
at

io
n

M
ic

ro
se

rv
ic

e
ap

pl
ic

at
io

ns

Engagement
applications

Integration Runtime

40Home 40

Let’s view these two conflicting priorities as two
ends of a pendulum. There are negatives at the
extreme end on both sides. On one side, we
have analysis paralysis where all we’re doing is
talking and thinking about what we should be
doing, on the other side we have the wild-wild-west
were all we’re doing is blindly writing code with
no direction or thought towards the longer-term
picture. Neither side is correct, and both have
grave consequences if allowed to slip too far to
one extreme or the other. The question still
remains: “If I’ve broken my teams into business
domains and they’re enabled and focused on
delivery, how do I get some level of consistency
across all the teams? How do I prevent duplicate
effort? How do I gain some semblance of
consistency and control while still enabling
speed to production?”

The answer is to also consider the architecture
role. In the SOA model the architecture team
would sit in an ivory tower and make decisions.
In the new world, the architects have an evolved
role--practicing architects. An example is
depicted in Figure 13.

Evolving the role of the
Architect

Microservice application

Microservice component Microservice component

Guild(s)

Here we have many teams and some of the members of those teams are playing a dual role.
On one side they are expected to be an individual contributor on the team, and on the other
side they sit on a committee (or guild) that rationalizes what everyone is working on. They are
creating common best practices from their work on the ground. They are creating shared
frameworks, and sharing their experiences so that other teams don’t blunder into traps
they’ve already encountered. In the SOA world, it was the goal to stop duplication/enforce
standards before development even started. In this model the teams are empowered, and the
committee or guild’s responsibility is to raise/address and fix cross cutting concerns at the
time of application development.

If there is a downside to decentralization, it may be the question of how to govern the
multitude of different ways that each application team might use the technology – essentially
encouraging standard patterns of use and best practices. Autonomy can lead to divergence.

Figure 13: Practicing architects play a dual role as individual contributors and guild members.

41Home 41

If every application team creates APIs in their
own style and convention, it can become
complex for consumers who want to re-use
those APIs. With SOA, attempts were made to
create rigid standards for every aspect of how
the SOAP protocol would be used, which
inevitably made them harder to understand and
reduced adoption. With RESTful APIs,
it is more common to see convergence on
conventions rather than hard standards. Either
way, the need is clear: Even in decentralized
environments, you still need to find ways to
ensure an appropriate level of commonality
across the enterprise. Of course, if you are
already exploring a microservices-based
approach elsewhere in your enterprise, then you
will be familiar with the challenges of autonomy.

Therefore, the practicing architect is now
responsible for knowing and understanding
what the committee has agreed to, encouraging
their team to follow the governance guidelines,
bringing up cross-cutting concerns that their
team has identified, and sharing what they’re
working on. This role also has the need to be
an individual contributor on one of the teams
so that they feel the pain, or benefit, of the
decisions made by the committee.

The practicing architect
is now responsible
for execution of the

 individual team mission
as well as the related

 governance
requirements that cut

across the organization.

With the concept of decentralization comes a
natural skepticism over whether the committee
or guild’s influence will be persuasive enough
to enforce the standards they’ve agreed to.
Embedding our “practicing architect” into the
team may not be enough.

Let’s consider how the traditional governance
cycle often occurs. It often involves the
application team working through complex
standards documents, and having meetings
with the governance board prior to the intended
implementation of the application to establish
agreement. Then the application team would
proceed to development activities, normally
beyond the eyes of the governance team.
On or near completion, and close to the agreed
production date, a governance review would occur.

Enforcing governance in a
decentralized structure

Inevitably the proposed project
architecture and the actual resultant
project architecture will be different,
and at times, radically different. Where
the architecture review board had an
objection, there would almost certainly
not be time to resolve it. With the
exception of extreme issues (such as
a critical security flaw), the production
date typically goes ahead, and the
technical debt is added to an
ever-growing backlog.

Clearly the shift we’ve discussed of
placing practicing architects in the teams
encourages alignment. However, the
architect is now under project delivery
pressure which may mean they fall into
the same trap as the teams originally did,
sacrificing alignment to hit deadlines.
What more can we do, via the practicing
architect role, to encourage enforcement
of standards?

The key ingredient for success in modern
agile development environment is
automation: automated build pipelines,
automated testing, automated
deployment and more. The practicing
architect needs to be actively involved
in ways to automate the governance.

42Home 42

This could be anything from automated code
review, to templates for build pipelines, to
standard Helm charts to ensure the target
deployment topologies are homogeneous even
though they are independent. In short, the
focus is on enforcement of standards through
frameworks, templates and automation, rather
than through complex documents, and review
processes. While this idea of getting the
technology to enforce the standards is far from
new, the proliferation of open standards in the
DevOps tool chain and cloud platforms in
general is making it much more achievable.

Let’s start with an example: say that you have
microservices components that issue HTTP
requests. For every HTTP request, you would
like to log in a common format how long that
HTTP transaction took as well as the HTTP
response code. Now, if every microservice did
this differently, there wouldn’t be a unified way
of looking at all traffic. Another role of the
practicing architect is to build helper artifacts
that would then be used by the microservices.
In this way, instead of the governance process
being a gate, it is an accelerator through the
architects being embedded in the teams,
working on code alongside of them. Now the
governance cycle is being done with the teams,
and instead of reviewing documents, the code is
the document and the checkpoint is to make
sure that the common code is being used.

Another dimension to note is that not all teams
are created equally. Some teams are cranking
out code like a factory, others are thinking
ahead to upcoming challenges, and some teams
are a mix of the two. An advanced team that
succeeds in finding a way to automate a
particular governance challenge will be much
more successful evangelists for that mechanism
than any attempt for it to be created by a
separate governance team.

As we are discussing the technical architect it
may seem that too much is being put on their
shoulders. They are responsible for application
delivery, they are responsible to be a part of the
committee discussed in the previous section,
and now we are adding on an additional
element of writing common code that is to be
used by other application development teams.
Is it too much?

A common way to offload some of that work is
to create a dedicated team that is under the
direction of the practicing architect who is
writing and testing this code. The authoring of
the code isn’t a huge challenge, but the testing
of that common code is. The reason for placing
a high value on testing is because of the
potential impact to break or introduce bugs into
all the applications that use that code. For this
reason, extra due diligence and care must be
taken, justifying the investment in the additional
resource allocation.

Clearly our aim should be to ensure that
general developers in the application
teams can focus on writing code that
delivers business value. With the
architects writing or overseeing common
components which naturally enforce the
governance concerns, the application
teams can spend more of their time on
value, and less in governance sessions.
Governance based on complex
documentation and heavy review
procedures are rarely adhered to
consistently, whereas inline tooling based
standardization happens more naturally.

43Home 43

The next and very critical person to consider is
the developer. Developers are now to be
expected and encouraged to be a full stack
developer and solve the business problem with
whatever technology is required. This puts an
incredible strain on each individual developer in
terms of the skills that they must acquire. It’s not
possible for the developer to know the deep ins
and outs of every aspect of each technology, so
something has to give. As we’ll see, what gives is
the infrastructure learning curve – we are finding
better and better ways to make infrastructural
concerns look the same from one product to
another.

In the pre-cloud days, developers had to learn
multiple aspects of each technology as
categorized in Figure 14.

How can we have
multi-skilled developers? Operations Deployment Build

Creation
Security Installation Resource

allocation

Operations Deployment Build
Creation

Security Installation Resource
allocation

Operation eployment Build
Creation

Security Installation Resource
allocation

Operations Deploymen uild
Creation

Security Installation Resource
allocation

Operations Deployment Build
Creation

Security Installation Resource
allocation

Figure 14: Required pre-cloud technology skills.

Decentralization allows developers to focus on what their team is
responsible for; delivering business results by creating artifacts.

s D

t B

Artifact

Artifact

Artifact

Artifact

Artifact

44Home 44

Operations Deployment Build Artefact
Creation Security Installation Resource

allocation

One day, in an ideal world, the only unique thing about using a technology will be the creation
of the artifact such as the code, or in the case of integration, the mediation flows and data
maps. Everything else will come from the environment. We’ll discuss this infrastructural change
in more depth in the next chapter.

Each column represents a technology and each
row represents an area that the developer had
to know and care about, and understand the
implications of their code on. They had to know
individually for each technology how to install,
how much resources it would need allocated to
it, how to cater for high availability, scaling and
security. How to create the artifacts, how to
compile and build them, where to store them,
how to deploy them, and how to monitor them
at runtime. All this unique and specific to each
technology. It is no wonder that we had
technology specific teams!

However, the common capabilities and
frameworks of typical cloud platforms now
attempt to take care of many of those concerns
in a standardized way. They allow the developer
to focus on what their team is responsible for,
delivering business results by creating artifacts!
Figure 15 shows how decentralization removes
the ‘white noise’.

The grey area represents areas that still need to
be addressed but are now no longer at the front
of the developer’s mind. Standardized
technology such as (Docker) containers, and
orchestration frameworks such as Kubernetes,
and routing frameworks such as Istio, enable
management of runtimes in terms of scaling,
high availability, deployment and so on.
Furthermore, standardization in the way
products present themselves via command line
interfaces, APIs, and simple file system-based
install and deployment mean that standard
tools can be used to install, build and deploy, too.

Figure 15: Required pre-cloud technology skills.

45Home 45

Of course, decentralization isn’t right for every
situation. It may work for some organizations,
or for some parts of some organizations but not
for others. Application teams for older
applications may not have the right skill sets
to take on the integration work. It may be that
integration specialists need to be seeded into
their team. This approach is a tool for
potentially creating greater agility for change
and scaling, but what if the application has been
largely frozen for some time?

At the end of the day, some organizations will
find it more manageable to retain a more
centralized integration team. The approach
should be applied where the benefits are needed
most. That said, this style of decentralized
integration is what many organizations and
indeed application teams have always wanted
to do, but they may have had to overcome
certain technological barriers first.

The core concept is to focus on delivering
business value and a shift from a focus on the
enterprise to a focus on the developer. This
concept has in part manifested itself by the
movement from centralized teams into more
business specific ones, but also by more subtle
changes such as the role of a practicing architect.

This concept is also rooted in actual technology improvements that are taking concerns away
from the developer and doing those uniformly through the facilities of the cloud platform.

As ever, we can refer right back to Conway’s Law (circa 1967) - if we’re changing the way we
architect systems and we want it to stick, we also need to change the organizational structure.

Conclusions on decentralized
integration ownership

46

The problem

The main problem was lack of end state vision.
Because each piece of work was taken
independently teams often did the minimum amount
of work to accomplish the business objective. The
main motivators for each team were risk avoidance
and drive to meet project deadlines – and a desire
not to break any existing functionality. Since each
team had little experience with the code they needed
to change, they began making tactical decisions to
lower risk.

Developers were afraid to break currently working
functionality. As they began new work, they would
work around code that was authored from another
team. Therefore, all new code was appended to
existing code. The microservices continued growing
and growing over time, which then resulted in the
microservices not being so micro.

This lead to technical debt piling up. This technical
debt was not apparent over the first few releases,
but then, 5 or 6 releases in, this became a real
problem. The next release required the investment
of unravelling past tactical decisions. Over time the
re-hashing of previously made decisions outweighed
the agility that this organization structure had
originally produced.

Home 46

A real-life scenario

An organization who committed to decentralization
was working with a microservices architecture that
had now been widely adopted, and many small,
independent assets were created at a rapid pace. In
addition to that, the infrastructure had migrated over
to a Docker-based environment. The organization
didn’t believe they needed to align their developers
with specific technical assets.

The original thought was that any team could work
on any technical component. If the feature required
a team to add an element onto an existing screen,
that team was empowered and had free range to
modify whatever assets were needed to to
accomplish the business goal. There was a level of
coordination that occurred before the feature was
worked on so that no two teams would be working
on the same code at the same time. This avoided the
need for merging of code.

In the beginning, for the first 4-5 releases, this
worked out beautifully. Teams could work
independently and could move quickly. However,
over time problems started to arise.

Lessons Learned

The solution

The solution was to align teams to microservices
components, and create clear delineation of
responsibilities. These needed to be done
through a rational approach. The first step was
to break down the entire solution into bounded
contexts, then assign teams ownership over
those bounded context. A bounded context is
simply a business objective and a grouping of
business functions. An individual team could
own many microservices components,
however those assets all had to be aligned to
the same business objective. Clear lines of
ownership and responsibility meant that the
team thought more strategically about code
modifications. The gravity of creating good
regression tests was now much more
important since each team knew they would
have to live with their past decisions.

Importantly, another dimension of these new
ownership lines meant less handoffs between
teams to accomplish a business objective.
One team would own the business function
from start to finish - they would modify the
front-end code, the integration layer and the
back-end code, including the storage. This
grouping of assets is clearly defined in
microservices architecture, and that principle
should also carry through to organization
structures to reduce the handoffs between
teams and increase operational efficiency.

47

If we are to be truly affective in transitioning to
an agile integration architecture, we will need to
do more than simply break out the integrations
into separate containers. We also need to apply
a cloud native - “cattle not pets” - approach to
the design and configuration of our integrations.

As a result of moving to a fully cloud native
approach, integration then becomes just
another option in the toolbox of lightweight
runtimes available to people building
microservices based applications. Instead of
just using integration to connect applications
together, it can now also be used within
applications where a component performs an
integration centric task.

Times have changed. Hardware is virtualized.
Also, with container technologies, such as
Docker, you can reduce the surrounding
operating system to a minimum so that you can
start an isolated process in seconds at most.
Using cloud-based infrastructure, scaling can be
horizontal, adding and removing servers or
containers at will, and adopting a usage-based
pricing model. With that freedom, you can now
deploy thin slivers of application logic on
minimalist runtimes into lightweight
independent containers. Running significantly
more than just a pair of containers is common
and limits the effects of one container going
down. By using container orchestration
frameworks, such as Kubernetes, you can
introduce or dispose of containers rapidly to
scale workloads up and down. These containers
are treated more like a herd of cattle.

Let take a brief look at where that concept came
from before we discuss how to apply it in the
integration space.

In a time when servers took weeks to provision
and minutes to start, it was fashionable to boast
about how long you could keep your servers
running without failure. Hardware was expensive,
and the more applications you could pack onto a
server, the lower your running costs were. High
availability (HA) was handled by using pairs of
servers, and scaling was vertical by adding more
cores to a machine. Each server was unique,
precious, and treated, well, like a pet.

Let’s examine what the common “pets”
model looks like. In the analogy, if you
view a server (or a pair of servers that
attempt to appear as a single unit) as
indispensable, it is a pet. In the context
of integration, this concept is similar to
the centralized integration topologies
that the traditional approach has used to
solve enterprise application integration
(EAI) and service-oriented architecture
use cases.

Chapter 6: Aspect 3: Cloud native integration
infrastructure

Integration pets:
The traditional approach

Cattle not pets

Home 47

Using cloud-based
infrastructure provides freedom

to deploy thin slivers of
application logic on minimalist

runtimes into lightweight
independent containers.

48Home 48Home

Table 1. Characteristics of pets

Integration hubs are often built only once in the initial infrastructure
stage. Scripts help with consistency across environments but are mostly
run manually.

The hub and its components are directly and individually monitored
during operation with a role-based access control to allow
administrative access to different groups of users.

The hub is nurtured over time, for example, by introducing new
integration applications, and changes to OS and software maintenance
levels. As part of this process, new options and parameters are applied,
changing the overall configuration of the hub. Thus, even if the server
started out being based on a defined pattern, gradually the running
instance becomes more bespoke with each change in comparison to the
original installation.

Typically pairs of nodes provide HA. Great care is taken to keep these pairs
up and running and to back up the evolving configuration. Scalability is
coarse-grained and achieved by creating more pairs or adding resources
so that existing pairs can support more workloads.

Manually built

Managed

Hand fed

Server pairs

General characteristics
of pets

How they are applied to a centralized or
traditional integration context

49Home 49Home

Table 2. Characteristics of cattle

Integrations are scaled horizontally and allocated on-
demand in a cloud-like infrastructure.

Using lightweight container technology encourages
changes to be made by redeploying amended images
rather than by nurturing a running server.

Integrations are run and deployed as more fine-grained
entities and, therefore, take less time to start.

Unrelated integrations are not grouped. Functional and
operational characteristics create colocation and
grouping

Resources and code are declared and deployed together.

Elastic scalability

Disposable and
re-creatable

Starts and stops
in seconds

Minimal
interdependencies

Infrastructure as
code

Characteristics of
cattle

How they are applied to a agile
integration architecture context

Simplistically, this shift means breaking
up the more centralized ESB runtime
into multiple separate and highly
decoupled run times. However, the
change involves more than just breaking
out the integrations into containers.
A cattle-based approach must exhibit
many, if not all, of the characteristics
in Table 2.

Adopting such an approach then impacts
the ways in which your DevOps teams
will interact with the environment and
the solution overall. These will be
consistent across any solution that
exists in a container-based architecture,
which will help create efficiencies as
more solutions are moved to lightweight
architectures.

Integration cattle:
An alternative lightweight
approach

50

• Maintenance: Integration servers are not
 administered live. If you want to make any
 adjustments such as change an integration,
 add a new one, change property values, add
 product fixpacks and so on, this is done by
 creating a new container image, starting up a
 new instance based on it, and shutting down
 the current container.
 Why? Any live changes to a running sever
 make it different from the image it was built
 from – it changes its runtime state. This would
 then mean that the container orchestration
 engine cannot re-create containers at will for
 failover and scaling.

• Monitoring: Monitoring isn’t done via
 connecting to a live running server. Instead,
 the servers report what’s going on inside
 them via logging, which is aggregated by the
 platform to provide a monitoring view.

 Why? Direct monitoring techniques would not
 be able to keep up with the constantly
 changing number of containers, nor would it
 be appropriate to expect every container to
 accept monitoring requests alongside its
 “day job”. Note: There are some exceptions
 such as a simple health check, which is used
 by the container orchestration platform to
 determine if the server is functioning correctly
 and replace it if required.

• Affinity: Integration servers cannot make
 any assumptions about how many other
 replicas are running or where they are.
 This means careful consideration needs to
 be paid to anything that implies any kind
 of affinity, or selective caching of any data.

 Why? In a word, scalability. The container
 orchestration platform must be able to
 add or remove instances at will. If state is
 held for any reason, it will not be retained
 during orchestration.

There are plenty of additional
considerations we could discuss, but the
overall point is clear: we need to think
very differently about how we design,
build, and deploy if we are to reap the
benefits of greater development agility,
elastic scaling, and powerful resilience
models.

Home 50

Adopting a “cattle
approach” impacts the

ways in which your
DevOps teams will
interact with the

environment and the
solution overall, create

increasing efficiencies as
more solutions are moved

to lightweight
architectures.

How do we know if we’re doing it
right? Are we really creating
replaceable, scalable cattle, or do we
still have heavily nurtured pets?

There are many elements to what
constitutes an environment made from
cattle rather than pets. One important
litmus test that we’ll discuss here revolves
around the question “What is a part of
your build package for each new version of
a component?”. Take a look at the two
images in Figure 16.

What’s so different with
cattle

51

• Environment Configuration: This would be
 the endpoints that are expected to change
 environment by environment. An example
 here would be if you’re integrating with
 something over HTTP, this configuration
 would be the HTTP endpoint. If you’re
 connecting to a Database then this would be
 the host, port, username and password.

• Runtime: This is what is running your code.
 It could either be your node runtime, java JRE,
 Liberty server, IIB server, MQ server, etc.
 It is the runtime that interprets and runs your
 coded artifacts.

Let’s start by defining what is meant by
the text in the diagram

• Code: This is the code that you author and
 deploy as a unit. In a Java world this would be
 your JAR/EAR/WAR file. In a Node.js world,
 this would be the js files. In an IBM Integration
 Bus (IIB) world, this would be your BAR file.

• Fixed Configuration: These would be the
 dependencies that your code relies on. If
 your code is making an HTTP call, this would
 be the HTTP package that you’re using. If
 you’re using a Database connection, this
 would be the ODBC or JDBC classes.

Home 51

An important question to ask when you
release a new version is what is the
scope of the build package. If it is code,
and only code, then you are treating your
server like a pet. This implies that
version upgrades and patches would be
done at a separate time and through a
separate mechanism, leaving you unable
to guarantee the consistency of the
delivered artifacts.

This also implies that you couldn’t spin
up a new server quickly enough to meet
the demands of elastic scaling.

If the answer to the litmus test question
was everything including code, fixed
configuration, runtime and environment
configuration, then you are more than
likely treating your servers as cattle.

This removes the chance that dev and
production react differently due to some
difference in server configuration since
the server configuration is packaged
alongside the code -“infrastructure as code”.

Figure 16: Pets versus Cattle

52

While we’re clearly encouraging you to consider the benefits of moving to a more
cattle-like approach, it’s only fair to recognize that more traditional pet-like approach
also has benefits that might be more challenging to achieve with cattle. For a quick
comparison, see Figure 17, which shows some of the characteristics that vary
between cattle and pets.

Home 52

Pros and cons

Pets Cattle
Longevity

Disposability

Resource efficiency
Elastic scalability

Interdependencies
Isolation

Maintenance effort
Agility

Centralization
Decomposition

Integration scenarios vary in the
characteristics that they need. With
modern approaches to more
lightweight runtimes and containers,
you have the opportunity to stand
up each integration in the way that
is most suited to it. You do not need
to assume that just because a cattle
approach suits many integrations,
it will suit all of them. For example,
existing integrations that rarely if
ever need to be changed, and have
predictable load may not gain any
immediate benefit from the cattle
approach. Conversely, new
integrations likely to undergo regular
amendments with as yet unknown
loads will benefit significantly. You
can use both approaches and even
add hybrid options as required.

Once the application development group
has taken on the integration, there’s an
elephant in the room: At what point are
they doing integration, as opposed to
application development?

For good reason, integration teams were
often told they should only do integration
logic, not application logic. This was to
avoid spreading business logic across
different teams and components
throughout the enterprise. This deep
divide between teams doing “application”
and “integration” constantly dogged SOA,
resulting in a cascade of waterfall-style
requirements between the teams that
slowed projects down.

Now let’s be clear here, the fundamental
premise of separating integration from
application is still important, but we no
longer need to go to the extremes of
having it done by separate teams – that
was just enforced on us by the technology
of the time.

Application and
integration handled by
the same team

Figure 17: Characteristics of Pets and Cattle

53

It is common to find microservices components
in an application whose responsibilities are
primarily focused around integration. For
example, what if all a microservice component
did was to provide an API that performed a few
invocations to other systems, collated and
merged the results, and responded to the
caller? That sounds a lot like something an
integration tool would be good at. A simple
graphical flow—one that showed which systems
you’re calling, allowed you to easily find where
the data items are merged, and provided a
visual representation of the mapping—would be
much easier to maintain in the future than
hundreds of lines of code.

Let’s look at another example. There’s a
resurgence of interest in messaging in the
microservices world, through the popularity of
patterns such as event-sourced applications
and the use of eventual-consistency techniques.
So, you’ll probably find plenty of microservice
components that do little more than take
messages from a queue or topic, do a little
translation, and then push the result into a data
store. However, they may require a surprisingly
large number of lines of code to accomplish. An
integration runtime could perform that with
easily configurable connectors and graphical
data mapping, so you don’t have to understand
the specifics of the messaging and data store
interfaces, as depicted in Figure 18.

Home 53

Integration technology in
a microservices

architecture can be a
high-productivity part of

any application.

What if, as in the previous section on
decentralization, we moved the integration
responsibility into the application team, and
that team happened to be building their
application using a microservices architecture?
One of the key benefits of microservice
architecture is that you can use multiple
different runtimes, each best suited to the job in
hand. For example, one runtime might be
focused on the user interface and perhaps be
based on Node.js and a number of UI libraries.
Another runtime might be more focused on a
particular need of the solution, such as a rules
engine or machine learning. Of course, all
applications need to get data in and out, so
surely we would expect to also see an
integration runtime too.

54

Figure 18: Using a lightweight integration runtime as a component within a microservices application

As you saw in previous sections, the
integration runtime is now a truly
lightweight component that can be run in
a cloud-native style. Therefore, it can
easily be included within microservices
applications, rather than just being used
to integrate between them.

When discussing this approach, an
inevitable question is Am I introducing an
ESB into a microservices application? It
is an understandable concern, but it is
incorrect, and it’s extremely important to
tackle this concern head on. As you may
recall from the earlier definitions, an
integration runtime is not an ESB. That is
just one of the architectural patterns the
integration runtime can be a part of.

ESB is the heavily centralized, enterprise-
scope architectural pattern discussed
earlier in Chapter 3. Using a modern
lightweight integration runtime to
implement integration-related aspects of
an application, deploying each integration
independently in a separate component
is very different indeed from the
centralized ESB pattern. So the answer
is no, by using a lightweight integration
runtime to containerize discrete
integrations you are most certainly not
re-creating the centralized ESB pattern
within your microservices application.

Home 54
Sy

st
em

s
of

 R
ec

or
d

En
ga

ge
m

en
t

Ap
pl

ic
at

io
ns

M
ic

ro
se

rv
ic

e
Ap

pl
ic

at
io

ns

Externally exposed services/APIs

Exposure Gateway (external)

Microservice application boundary

Asynchronous integration

Request/response integration

Lightweight integration runtime

API Gateway

Lightweight language runtime

Enterprise API

Public API

55

One of the key benefits of microservices
architecture is that you are no longer restricted
to one language or runtime, which means you
can have a polyglot runtime—a collection of
different runtimes, each suited to different
purposes. You can introduce integration as just
another of the runtime options for your
microservices applications. Whenever you need
to build a microservices component that’s
integration centric, you would then expect to
use an integration runtime.

Traditionally, integration runtimes have been
mostly used for integration between separate
applications—and they will certainly continue
to perform that role—but here we are discussing
its use as a component within an application.

In the past, it would have been difficult for
application developers to take on integration
since the integration tooling wasn’t part of the
application developer’s toolbox. Deep skills
were often required in the integration product
and in associated integration patterns. Today,
with the advances in simplicity of integration
runtimes and tooling, there is no longer a need
for a separate dedicated team to implement
and operate them. Integrations are vastly easier
to create and maintain.

In a world where applications are now
composed of many fine-grained components
that can be based on a polyglot of different

runtimes, we now have the opportunity to use
the right runtime for each task at hand. Where
integration-like requirements are present,
we can choose to use an integration runtime.

Figure 19: Traditional infrastructure with every capability
tied to a specific runtime, and a cloud native nfrastructure
with almost all capabilities provided by the platform.

What is it exactly that has made it possible for
microservice application teams to work with
multiple different languages and runtimes within
their solution. Certainly, in part it comes down
to the fact that languages have become more
expressive – you can achieve more, with less
lines of code – and tooling has become easier
to learn and more powerful. However, there’s
another key reason that is directly related to
what cloud-native brings to the table. The
runtimes share a common infrastructure not
just at the operating system level, but in many
other dimensions.

Historically, each runtime type came with
its own proprietary mechanisms for high-
availability, scaling, deployment, monitoring
and other system administration tasks.

Figure 19 demonstrates the difference between
traditional and cloud native infrastructures.

Home 55

Common infrastructure
enabling multi-skilled
development

56

introducing a lightweight integration
runtime to the toolkit will aid productivity
with a minimal learning curve.

One of the major benefits of using a cloud native
architecture is portability. The goal of many
organizations is to be able to run containers
anywhere, and to be able to move freely
between a private cloud, various vendors of
public cloud or indeed a combination of these.

Cloud native platforms must ensure
compatibility with standards such as Open API,
Docker and Kubernetes if this portability is to
be a reality for consumers. Equally, runtimes
must be designed to take full advantage of the
standardized aspects of the platforms.

An example might be data security. Let’s
assume a solution has sensitive data that must
remain on-premises at this point in time.
However, regulations and cloud capabilities may
mature such that it could move off-premises at
some point in the future. If you use cloud native
principles to create your applications, then you
have much greater freedom to run those
containers anywhere in the future.

Modern lightweight runtimes are designed to
leverage many if not all of those capabilities
from the platform in which they sit. Cloud native
platforms such as Kubernetes combined with
suitable runtime frameworks enable a
lightweight runtime to be made highly available,
scaled, monitored and more in a single
standardized way rather than in a different way
for each runtime.

Essentially the team only needs to gain one set
of infrastructure skills and they can then look
after the polyglot of runtimes in the application.
This standardization extends into common
source code repositories such as GitHub and
build tools such as Jenkins. It also increases the
consistency of deployment as you are
propagating pre-built images that include all
dependencies out to the environments. Finally,
it simplifies install by simply layering files onto
the file system.

Ideally, the only new skills you need to pick up
to use another runtime is how to build its
artifacts, whether that be writing code for a
language runtime, or building mediation flows
for an integration engine. Everything else is
done the same way across all runtimes.

Once again, this brings the freedom to choose
the best runtime for the task at hand. Based on
the information above, it is clear that if a
microservices-based application has components
that are performing integration-like work,

Home 56

Portability: Public,
private, multicloud

Other examples might include,
development and test in one cloud
environment and production in a
different one, or using a different
cloud vendor for a disaster recovery
facility.

Whatever the reason, we are at a
point where applications can be more
portable than ever before, and this
also applies to the integrations that
enable us to leverage their data.
Those integrations need to be able to
be deployed to any cloud infrastructure,
and indeed enable the secure and
efficient spanning of multiple cloud
boundaries.

57

When we decompose what a microservices
application is actually composed of, we see
there is a blend of both business logic and
integration. There will always be a benefit of
writing integration-specific microservices in
a lightweight integration runtime and taking
advantage of the productivity enhancements.
If we have an integration runtime available
that can behave just like any other lightweight
runtime, truly playing to cloud-native principles,
then that’s what we should be using when it
comes to the many integration-centric tasks
required in modern applications. It as an
essential tool in the cloud-native tool box.

Home 57

Conclusion on cloud native
integration infrastructure

58

The problem
The teams immediately got stuck at a standstill, because the creation of each new service
meant that they would have to create a unique VM, install a runtime on top of that VM,
configure each one for that particular use case, and finally add code to that runtime. These
steps would then have to be repeated and tested for each and every environment.

Development velocity came to a screeching halt as onboarding new microservices took too
much time. Developers were stuck waiting for the creation of the infrastructure to run each
new microservice. Inevitably, this raised the notion of leveraging runtimes that were already
created. This was the exact behavior the organization had set out to avoid!

Home 58

A real-life scenario

The solution

An organization had adopted a microservices
architecture with agile methodologies.
On their roadmap, this organization was on
pace to build out many microservices in a
very short amount of time. This notion was
perfectly aligned with the attributes of
microservices architecture and did not
indicate any reason for concerns.

The team is new enough to plan for avoiding
noisy neighbor scenarios, which would
certainly lead to dependency clashes. To
avoid such problems, they established the
need to create a new runtime for each
microservice. However, they did not choose
to implement this on a cloud infrastructure.
Instead, the team adopted VMs to provide
this containment and required that each
microservice would need to run on its
own VM.

The team then realized the need for containers. A necessary component to support a
microservices architecture is a cloud environment. The team quickly realized that the isolation
that containers provide solved the problem of version clashes as well as isolating each
individual container from the noisy neighbor scenario. The solution here was therefore straight
forward - the team agreed on and adopted a cloud platform.

While this improved the situation, it didn’t succeed in entirely solving the problem. The team
was still treating Docker containers like VMs. The container was started with the necessary
running software and dependencies, but code came and went with each new version. The
concept of packaging and treating Docker images differently that VMs was lost. To improve
this state, the team picked the appropriate workload and started with stateless services.
From here, they could treat Docker containers like cattle, enabling a container to be
disposable. They also ensuring that each new version of code resulted in a new Docker image,
ensuring greater consistency between environments, and a more technology independent
build chain. This provided the agility the team needed to keep up with the demands of a
microservices architecture.

Lessons Learned

59

Now that you understand the concepts of an
agile integration architecture it is important that
we examine next steps. While no two journeys
are the same there are some commonalities
that can be explored which may help you along
the path to making an agile integration
architecture a reality.

- Chapter 7: What path should you take?
 Explores several ways agile integration
 architecture can be approached

- Chapter 8: Agile integration architecture
 for the Integration Platform
 Surveys the wider landscape of integration
 capabilities and relates agile integration
 architecture to other styles of integration as
 part of a holistic strategy.

Section 3: Moving
Forward with an Agile
Integration Architecture

So far, you have seen how the centralized ESB pattern is in some cases being replaced by
one or more of the following new approaches:

• Fine-grained integration deployment splits up the centralized ESB pattern into
 more granular manageable pieces to enable a much more agile, scalable, and resilient
 usage of integration runtimes.

• Decentralized integration ownership puts the creation and maintenance of
 integrations into the hands of application teams, reducing the number of teams and
 touchpoints involved in the creation and operation of end-to-end solutions.

• Cloud native integration infrastructure fully extends agile integration architecture
 principles into the cloud native space, treating the integration runtime as a true cloud
 native component.

Each of these aspects is an independent architectural or organizational decision that may
be a good fit for your upcoming business solutions. Furthermore, although this booklet has
described a likely sequence for how these approaches might be introduced, other sequences
are perfectly valid.

Chapter 7: What path should you take?

Each aspect of agile integration architecture
is an independent architectural decision,

any one of which may be a benefit to
your business.

Home 59

60

For example, decentralization could precede the
move to fully fine-grained integration deployment
if an organization were to enable each application
team to implement their own “separate ESB
pattern”. Indeed, if we were being pedantic, this
would really be an application service bus or a
domain service bus. This would certainly be
decentralized integration—application teams
would take ownership of their own integrations
but it would not be fine grained integration
because each application team would still have
one large installation containing all the
integrations for their application.

The reality is that you will probably see hybrid
integration architectures that blend multiple
approaches. For example, an organization might
have already built a centralized ESB for
integrations that are now relatively stable and
would gain no immediate business benefit by
refactoring. In parallel, they might start
exploring fine-grained integration deployment
for new integrations that are expected to
change quite a bit in the near term.

have come full circle, and are returning to
point-to-point integration. The applications that
require data now appear to go directly to the provider
applications. Are we back where we started?

To solve this conundrum, you need to go back to
what the perceived problem was with
point-to-point integration in the first place:
interfacing protocols were many and varied, and
application platforms didn’t have the necessary
technical integration capabilities out of the box.
For each and every integration between two
applications, you would have to write new,
complex, integration-centric code for both the
service consumer and the service provider.

Now compare that situation to the modern,
decentralized integration pattern. The interface
protocols in use have been simplified and
rationalized such that many provider applications
now offer RESTful APIs— or at least web services
and most consumers are well equipped to make
requests based on those standards.

Where applications are unable to provide an
interface over those protocols, powerful
integration tools are available to the application
teams to enable them to rapidly develop APIs/
services using primarily simple configuration
and minimal custom code.

Comparing the point-to-point architectures we
were trying to escape from in the early 2000s with
the final fully decentralized architectures we’ve
discussed, it might be tempting to conclude that we

Along with wide-ranging connectivity
capabilities to both old and new data
sources and platforms, these integration
tools also fulfill common integration
needs such as data mapping, parsing/
serialization, dynamic routing, resilience
patterns, encryption/decryption, traffic
management, security model switching,
identity propagation, and much more—
again, all primarily through simple
configuration, which further reduces the
need for complex custom code.

The icing on the cake is that thanks to the
maturity of API management tooling, you
are now able to not only provide those
interfaces to consumers, but also:

• make them easily discoverable by
 potential consumers
• enable secure, self-administered
 on-boarding of new consumers
• provide analytics in order to understand
 usage and dependencies
• promote them to externally facing so
 they can be used by third parties

• potentially even monetize APIs,
 treating them as a product that’s
 provided by your enterprise rather
 than just a technical interface

Home 60

Don’t worry…we haven’t
returned to point-to-point

61

In this more standards-based, API-led
integration, there is little burden on either side
when a consuming application wants to make
use of APIs offered from another provider
application.

Of course, API management is only part of the
picture. API management provides the
standardized, secure, discoverable exposure of
an API, but what if the application in question
doesn’t provide an API today, or it does, but it’s
the wrong granularity, or it is overly complicated,
or it has a complex security model. This is
where application integration runtimes come
into play. They provide the tools to perform
deep connectivity, unpick complex protocols,
compose multiple requests to produce an API
that is appropriate for exposure through an API
management layer.

It’s not point-to-point because, this integration
and surfacing of the API is only done once, on
the provider side, for a given capability. It can
then be re-used easily by multiple consumers,
and its usage can be monitored and controlled
in a standardized way.

Many organizations are choosing both –
recognizing there are scenarios that lend
themselves more in one direction or the other.

Therefore, when it comes to deployment options,
the integration technology must provide “choice
with consistency”. Consistency refers to having
the same capabilities available regardless of
how the platform is deployed.
In this way, the enterprise users have ultimate
flexibility and avoid making trade-offs between
“right architecture” versus “best productivity”.
Choice means that there are multiple deployment
models that help satisfy organizational
imperatives, which may include:

• Simplified administration and management
• Performance optimization
• Dynamic scalability/flexibility

Organizations should seek out options for a
hosted service in the cloud (often referred to
as an Enterprise iPaaS), an installable software
image, or as a prebuilt Docker image (as we
have largely been discussing). Each of these
deployment options has a value that aligns
to the imperatives listed above.

Depending on your specific organizational goals
will lead you to choose one of these options
over the other. The following three imperatives
are expanded on here to help guide that
decision making:

As the organization considers shifting the
architecture, there will be an inevitable question
about whether to deploy the integration
components on premise or on the cloud.

Home 61

Deployment options for
fine-grained integration

Increasingly,
organizations will need

to deploy integration
technology in hybrid

fashions and therefore
need choice of

deployment option and
consistent functionality

in all options.

Simplified Administration and
Management

One of the great benefits of managed
software is that it lowers the level of
expertise required for anyone to be
successful. This is a key concern where
enterprises are looking to push the
integration capabilities outside of their
core IT operation. Many organizations are
seeking simpler deployment, management
and administration models, particularly
when the workloads are not as aggressive,
or where cost is a primary issue.

62

Performance optimization

Maximizing performance is a multi-faceted
requirement. Within real-time architectures, the
primary consideration is typically reducing
latency. In this scenario, we want the message
(or service call) to execute with as little friction as
possible. Collocating hardware has an advantage
in reducing network hops and avoiding network
congestion. Pinning key reference data in local
caches provides a means of avoiding making
additional external calls which themselves
introduce communication time. Ensuring the
service has a large enough pipe at anytime to
accept any incoming requests also avoids wait
times. A system that deals with such requirements
effectively tends to cost more, but where the
business solution is mission-critical, it may well
be worth the time, effort and cost.

Where a single organization integration in
multiple solutions (i.e. most businesses), that
business may in fact seek to satisfy both
imperatives.

In this situation, organizations may favor the
managed service option. An environment can be
provisioned within a multi-tenant cloud within
minutes. The vendor maintains the health of the
environment and currency of the software,
greatly reducing the time, energy and cost of
traditional server installations.

If performance optimization is the primary
requirement, an organization will likely prefer an
on-premises installation on dedicated hardware
and network infrastructure. The integration
platform should be installable in the hardware
environments of your choice (X, P and Z
hardware) – whichever best fits the solution
requirements.

Dynamic scalability/flexibility

Many organizations have spikes in processing
that happen at various times in the year.
For the retailer, these periods occur around
Thanksgiving or Valentine’s Day (or others
depending on the specific merchandise). For
healthcare companies, there is a tendency to
see larger workloads during open enrollment
periods in November and December. However,
other spikes in workload cannot be so neatly
planned, and when the workload represents
significant business opportunity for profit, the
ability to scale up processing quickly is
paramount to success. In this book, we have
explored the container-based and
microservices-aligned architecture which is
perfectly suited to helping organizations with
this requirement. While other architecture
choices do exist, the repeatability of the
container-based model across many IT
disciplines makes this increasingly attractive.

Home 62

As we have discussed earlier in this
book, the integration technology should
be available as a container. This fine-
grained deployment model removes
single points of management and control
so that the architecture can scale
independently of other workloads in the
environment. Following the principles of
cloud-native applications, the
technology is then a perfect fit for
organizations pursuing such scalability
and flexibility.

63Home 63

One of the key things that Gartner notes
is that the integration platform allows
multiple people from across the
organization to work in user experiences
that best fits their needs. This means that
business users can be productive in a
simpler experience that guides them
through solving straightforward problems,
while IT specialists have expert levels of
control to deal with the more complex
enterprise scenarios. All of these, users
can then work together through reuse of
the assets that have been shared; while
preserving governance across the whole.

Satisfying the emerging use cases of the
digital transformation is as important as
supporting the various user communities.
The bulk of this chapter will explore these
emerging use cases, but first we should
further elaborate on the key capabilities
that must be part of the integration
platform.

Through this book, we have been focused on the
application integration features as deployed in an
agile integration architecture. However, many
enterprise solutions can only be solved by
applying several critical integration capabilities.
An integration platform (or what some analysts
refer to as a “hybrid integration platform”) brings
together these capabilities so that organizations
can build business solutions in a more efficient
and consistent way.

Many industry specialists agree on the value of
this integration platform. Gartner notes:

Chapter 8: Agile integration architecture for
the Integration Platform

What is an integration
platform?

The hybrid integration platform (HIP)
is a framework of on-premises and
cloud-based integration and governance
capabilities that enables differently skilled
personas (integration specialists and
nonspecialists) support a wide range of
integration use cases.… Application leaders
responsible for integration should leverage
the HIP capabilities framework
to modernize their integration strategies
and infrastructure, so they can address the
emerging use cases for digital business3.

3Hype Cycle for Application Infrastructure and Integration, 2017, Elizabeth Golluscio.

IBM Cloud Integration brings together
the key set of integration capabilities into
a coherent platform that is simple, fast
and trusted. It allows you to easily build
powerful integrations and APIs in
minutes, provides leading performance

The IBM Cloud Integration
Platform

IBM has been leading innovation in the
integration space for 20 years, is a market
leader for each integration capability and has
been investing significantly in agile integration
architecture. As such, the aspects that we’ve
explored through the prior chapters are all
areas that are supported with IBM Cloud
Integration Platform.

In the following chapter, we will provide a
survey of the IBM Cloud Integration Platform
so that you can understand the key capabilities
it offers and some of the primary use cases
that customers generally apply it to. We hope
that material is useful in complementing your
integration strategy.

While not covered further in this book, another
technology which will be interesting to
organizations who recognize the merits of this
approach is IBM Cloud Private. IBM Cloud
Private is a robust application platform for
developing and managing on-premises,
containerized applications. It is an integrated
environment for managing containers that
includes the container orchestrator
Kubernetes, a private image repository,
a management console, and monitoring
frameworks. IBM Cloud Private also includes
a graphical user interface which provides a
centralized location from where you can
deploy, manage, monitor, and scale your
applications. IBM Cloud Private fully supports
the orchestration requirements of the
approaches we have described in this book.

Agile integration
architecture and IBM

64

API Management
Exposes and manages business services as
reusable APIs for select developer communities
both internal and external to your organization.
Organizations adopt an API strategy to
accelerate how effectively they can share their
unique data and services assets to then fuel
new applications and new business
opportunities.

Security Gateway
Extend Connectivity and Integration beyond the
enterprise with DMZ-ready edge capabilities that
protect APIs, the data they move, and the
systems behind them.

Application Integration
Connects applications and data sources
on-premises or in the cloud, in order to
coordinate exchange business information so
that data is available when and where needed.

Messaging
Ensures real-time information is available from anywhere at anytime by providing reliable
message delivery without message loss, duplication or complex recovery in the event of
system or network issue.

Data Integration
Accesses, cleanses and prepares data to create a consistent view of your business within a data
warehouse or data lake for the purposes of analytics.

High Speed Transfer
Move huge amounts of data between on-premises and cloud or cloud-to-cloud rapidly and
predictably with enhanced levels of security. Facilitates how quickly organizations can adopt
cloud platforms when data is very large.

and scalability, and offers unmatched end-to-end
capabilities with enterprise-grade security.

Within the IBM Cloud Integration platform, we
have coupled the six key integration specialties
- each a best-of-breed feature in its own right.
These are:

Home 64

IBM Cloud Integration Platform
Premier Integration Experience

API Lifecycle Security
Gateway

Application
Integration

Messaging
& Events

Data
Integration

High Speed
Transfer

Analytics | Security | Governance

OnCloud | Hybrid | On Premises

Figure 20: The IBM Cloud Integration Platform

65

Scenario 1: Unlock business data and asets as APIs
API Management is one of the fastest growing segments in the integration space. The reason for this is
based on the speed at which organizations can build new business opportunities through a robust API
strategy. The ability to socialize and get applications, services, or data into the marketplace is critical for
any company that wants to grow. One of the best ways to do this is by exposing services as APIs for
external consumption. Organizations do this to either encourage development and expand their
presence in an ecosystem, or to create new revenue opportunities by using APIs. Usage increases as
organizations grow their ecosystems and as their products or services integrate with more applications
and platforms. A properly designed self-service API Developer Portal allows internal developers and
partners to quickly gain access to underlying apps without sacrificing security. It also socializes
microservices and APIs across teams, reducing duplication of work.

Home 65

API Management is one of the fastest growing segments in
the integration space. The reason for this is based on the

speed at which organizations can build new business
opportunities through a robust API strategy.

Through thousands of implementations, we have observed that customer’s adoption of integration
capability is normally in pursuit of very common business objectives. The four listed in this chapter
are not the only relevant patterns, but are among the most pervasive across organizations of any
size. After we describe each use case, we’ll then also look at some of the key integration capabilities
that leading IT professionals apply to be successful.

Emerging use cases and the integration platform

66

Deciding to adopt an API-led approach is of
course just the beginning of the story, you then
need to actually implement the APIs. This comes
in two parts:

• An outward facing API management capability
 providing a gateway to make the APIs safely
 and securely available to the outside world,
 and providing the self-administered developer
 portal to enable consumers to discover,
 explore and gain access to the APIs.

• An application integration runtime to enable
 access to data held deep in systems of record,
 transforming, translating and enriching the
 data to the point where it is fit to be exposed
 via the API gateway.

One of the primary drivers behind an API
strategy is to encourage innovation, by providing
external parties with the opportunity to think
creatively about how to leverage your data and
build it into new business models. This is very
different from traditional integration where the
required interfaces where often well known in
advance and driven by specific projects. APIs
are much more demand driven, and are
constantly evolving as the ecosystem around
them develops. Agile integration architecture
enables us to react to this continuously iterating
environment, allowing safer adjustment and
introduction of individual integrations in isolation.

Also, critical to the API economy is elastic
scalability, as it is nearly impossible to know
which of your APIs will become popular. The
cloud native infrastructure employed by agile
integration architecture enables us to start small
yet still scale on demand should a particular API
start to gain traction.

This is further complicated as different
parts of the organization start adopting
IaaS in different cloud platforms.

While these cloud platforms may include
messaging technology, IT teams are
finding that the assumptions of the lower
qualities of services provided by these
platforms (typically “at least once
delivery”) increase the burden on every
new application to program to this new
pattern in a consistent way. Finally, these
new messaging platforms don’t naturally
bridge into the existing backend systems,
so integrating them across the DMZ
becomes a challenge of its own.
Organizations need messaging and
integration platforms adept at bridging
across cloud and back end systems
reliably and securely.

Home 66

Scenario 2: Increase
business agility with a
modern messaging and
integration infrastructure
Many enterprises have long used messaging
and integration at the heart of their critical
business applications. As they shift their
attention to the cloud, and especially to
microservices, delivery of information by
messaging becomes even more important.
One of the key design points of microservices
architecture is that microservices should each
be highly independent and decoupled, and
messaging is a key way to achieve that.

However, when it comes to delivering messages
across application boundaries they face some
challenges. Where they would like to build new
customer engagement experiences on a cloud
hosted infrastructure, they are finding that
tying these new systems into their existing
on-premises back-ends is challenging.

67

Modern messaging and integration middleware
brings a new set of capabilities to overcome
these challenges:

• Enhancement of the enterprise integration
 platform components to embrace cloud
 characteristics such as elasticity, security,
 scalability, and others.

• Multicloud strategy using connection and
 integration capabilities on external vendor
 cloud platforms through open standards
 to use best-in-class capabilities and avoid
 vendor/platform lock-in.

The modern messaging offering must provide
robust, scalable, secure, and highly available
asynchronous messaging to allow applications,
systems, and services to exchange data through
a queue, providing guaranteed once-and-once-
only delivery of messages, enabling the
business to focus on the applications rather
than technical infrastructure. Ultimately, a high
quality distributed messaging capability allows
the application to become portable to wherever
that messaging capability can be deployed.

In addition, an integration runtime then
simplifies how different applications and
business processes interact with the messaging
layer regardless of the application type
(for example, off-the-shelf, custom-built,
software as a service), location (private cloud,
public cloud), protocol, or message format.

Messaging is all about decoupling; isolating
components from one another to reduce
dependencies, and increase resilience.
Fine-grained integration deployment further
increases that resilience by ensuring that
wherever messaging interactions require
integration, they have their own dedicated
containers performing that work, reducing
regression testing, and improving reliability.

Agile integration architecture also simplifies
migration to and between cloud platforms since
the integrations relevant to a particular application
can be moved independently of the others.

The integrations live with the application
rather than in an inflexible centralized
infrastructure.

Home 67

Organizations need
messaging and integration
platforms adept at bridging

across the cloud and
back-end systems in order

to provide consistent
solution development

experiences and speed
productivity.

Scenario 3: Transfer and
Synchronize Your Data
and Digital Assets to the
Cloud

One of the most critical aspects of the
customer experience is responsiveness
and ease. We live in a “now world” where
businesses and consumers expect instant
access to the information they need.
The technical difficulty of providing
reliable and secure access to this data
does not concern them. Regardless of the
communication channel, distance, or
device, they expect timely and reliable
information and action whenever they
interact with your organization.

This need creates difficulties for
organizations on several fronts. An obvious
one is the delivery of any size, number, or
type of digital asset to anywhere. Today,
data size, transfer distance, and network
conditions still greatly impact the speed
and reliability that customers will get
versus what they expect. This dilemma
has become chronic as more industries
become data-driven and operations
expand globally.

68

IBM Cloud Integration provides a
comprehensive data transfer and sync system
that is hybrid and multicloud, addressing
a flexible set of data transfer needs.
This high-speed transfer technology makes it
possible to securely transfer data up to 1000x
faster than traditional tools, between any kind
of storage, whether it’s on premises, in the
cloud, or moving from one cloud vendor to
another, regardless of network latency or
physical distance.

Some common situations for high speed
transfer are:

• Sending and syncing urgent data of
 any size between your enterprises’
 data centers anywhere around the globe

• Sending and syncing data to any major
 public cloud by using our presence in
 all public clouds to enable cloud
 migration at high speed

• Participating in larger solution patterns
 along with other integration technologies
 (such as messaging and application
 integration) to reduce latency and
 provide delivery consistency

Home 68

Shifting large data
volumes between data
centers and the cloud

infrastructure can be a
primary roadblock to
cloud adoption unless

addressed through high
speed transfer technology.

Another difficulty is a bit more behind the
scenes. The amount of data created for and by all
of us is growing exponentially in our hyper-
connected world. Today, businesses are moving
to a multicloud environment to gain maximum
agility, efficiency, and scale, while lowering
operating risk. To support big data processing in
the cloud, organizations need a solution
specifically designed to move large files and data
sets to and from multiple cloud infrastructures
quickly and securely.

Therefore, in a multicloud architecture,
particularly where part of the solution
requirements is to transfer video or
other large files, the ability to distribute
these capabilities across the topology in
a distributed manner is paramount to
achieve good customer experiences.
Organizations must then consider
weaving high-speed transfer into API,
application and messaging-led
solutions. The elastically scalable
infrastructure that underlies any one of
these should then also account for
variability in the scale out requirements
of this data transfer layer.

69

As part of the IBM Cloud Integration Platform,
IBM App Connect provides a range of
experiences that enable organizations to rapidly
configure, deploy, and manage integrating their
SaaS applications with other systems across
their business or enterprise.

It offers users intuitive tools and a no-code
configuration-based approach, enabling them to
quickly build integration “flows”. These flows
can address a broad set of integration
requirements:

Home 69

IPaaS solutions accelerate
business transformation

through adoption of SaaS
apps via simple

configuration-based
approaches to integration.

Scenario 4: Integrating SaaS
Businesses are rapidly adopting a new class of
applications in the cloud to drive business
transformation - software-as-a-service (SaaS)
applications. These streamline and augment
activities that were previously supported by
more traditional on-premises applications. SaaS
is providing innovative capabilities, low costs to
get started, and the ability to rapidly scale. It is
for these reasons that apps like Salesforce,
Netsuite, Workday, and others have become so
very popular.

To maximize the impact of their SaaS
purchases, organizations can’t afford for these
applications to become isolated. By integrating
their SaaS applications with other systems and
data, organizations not only realize the full
range of capabilities that the SaaS application
offers, but they are able to augment their SaaS
purchases with other apps and services to
deliver richer outcomes that drive greater
productivity and operational efficiency.

Integration SaaS applications typically are
provided through technology referred to as
“integration platform as a service,” also known
as iPaaS. Integration platform as a service
provides the full gamut of integration capability
with its ability to handle connectivity and
integration to applications on-premises and in
the cloud. The iPaaS experience is purpose-
built to simplify and accelerate the activities for
creating and running integrations in the cloud.

• event-based integrations – watch for
 business events across systems and then
 trigger downstream actions when those
 events occur

• data synchronization – ensures
 that data (for instance, customer
 data) is kept in sync across multiple
 systems where it is stored and
 maintained

• integration services – exposes
 integration logic as a RESTful end point
 (API) so that it can be offered as part of
 any business application or process

• batch processing – extracts a set of
 information from an app, database, or
 other data store, transforms that
 information into a target format, and
 loads it wherever required

Many organizations are looking to
compliment this iPaaS capability with
API Management in a few scenarios:

• Where the iPaaS is building new
 RESTful integration services, those
 APIs need to be managed, secured
 and governed in a manner that is
 consistent with other APIs
 developed in the enterprise.

70

• Some organizations have found that they
 need to take an active role in managing the
 workload they generate against their SaaS
 app. This may be so that they can defer API
 limits from those vendors or overage charges.
 API Management can be inserted to gate
 access to these SaaS apps, and prioritize
 certain classes of enterprise workload.
 Additionally, each project can be metered
 and usage can be tracked. This would be
 very useful for internal charge backs.

• Coupling the iPaaS and API Management
 layer can provide a more consistent
 abstraction layer when an organization
 has a variety of SaaS apps that they need
 to build against. Without a layer of
 abstraction each team would have to go
 through that learning curve to implement
 with each SaaS provider.

The IBM Cloud Integration Platform is itself
written using microservices architecture. This is
what enables us to bring new features to market
so quickly, and manage the multi-tenant load so
elastically. With the most recent release, we
extended these features such that you can build
integrations in the cloud that seamlessly hook
into any of your enterprise systems. This
provides you with a single product that has both
rich enterprise connectivity along with a huge
breadth of cloud application connectors,
enabling true any-to-any integration on a
lightweight architecture.

Home 70

71

Through this final chapter, hopefully you’ve gotten a broader
perspective of the various critical capabilities required as part of
an integration platform, a sense of the requirements for those
capabilities to work together, and an appreciation of how the agile
integration architecture can be adopted to enable greater agility,
scalability and resilience for the platform.

It is also our hope that you’ve gained an appreciation for how IBM
has continued to innovate so that our customers can benefit from
adopting modern integration technologies that assist them
ultimately in satisfying their digital transformation objectives.

Kim, Nick and Tony are very happy to entertain questions, receive
feedback, and advise on specifics that might not have been
covered in this work. If you’d like to reach out, please find our
contact information in the “About the Authors” section. Of course,
we are also happy to be working for IBM where we have a great
team of professionals who also stand at the ready. If you already
have friends at Big Blue, we’re sure they would also be happy to
get your call.

Conclusions
Home 71

72

Appendix One: References

New material on this topic will be published/promoted on:
http://ibm.biz/AgileIntegArchLinks

SA regularly updated collection of relevant links exists here:
http://ibm.biz/AgileIntegArchLinks

The book builds on the following source material

• Moving to agile integration architecture
 http://ibm.biz/AgileIntegArchPaper

• The fate of the ESB
 http://ibm.biz/FateOfTheESBPaper

• Microservices, SOA, and APIs: Friends or enemies?
 http://ibm.biz/MicroservicesVsSoa

• Cattle not pets: Achieving lightweight integration with IIB
 http://ibm.biz/CattlePetsIIB

• The hybrid integration reference architecture
 http://ibm.biz/HybridIntRefArch

Home 72

http://ibm.biz/IBMEdgeAssessment
http://ibm.biz/IBMEdgeAssessment

Please Recycle

00000000-USEN-00

© Copyright IBM Corporation 2018

IBM Corporation
Software Group
Route 100
Somers, NY 10589

Produced in the United States of America
May 2018

IBM, the IBM logo, and ibm.com are trademarks of International
Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM
trademarks is available on the web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml.

This document is current as of the initial date of publication and
may be changed by IBM at any time. Not all offerings are
available in every country in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS
PROVIDED “AS IS” WITHOUT ANY WARRANTY,
EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION
OF NON-INFRINGEMENT. IBM products are warranted
according to the terms and conditions of the agreements under
which they are provided.

http://www.ibm.com/legal/copytrade.shtml

