
Agile Integration:
Container-based and
microservices-aligned
lightweight integration
runtimes

Embrace digital

transformation with agile

integration centered

around an equally agile

approach, giving you

the ability to move

quickly to meet the

demands of multicloud,

decentralization and

microservices.

Table of Contents
Executive Summary

Integration Has Changed

The Journey So Far – SOA, ESBs and APIs

The Case for Agile Integration

Aspect 1: Fine-grained integration deployment

Aspect 2: Decentralized integration ownership

Aspect 3: Cloud-native integration infrastructure
How has the modern integration runtime changed to accommodate agile integration?

Agile Integration for the integration platform

IBM Cloud Pak for Integration

4
5
6
8
9

10
10

12
13

Executive Summary
Organizations pursuing digital transformation must embrace
new ways to use and deploy integration technologies,
so they can move quickly in a manner appropriate to the
goals of multicloud, decentralization and microservices.
Integration must transform to allow organizations to move
boldly in building new customer experiences, rather than
forcing models for architecture and development that pull
away from maximizing the organization’s productivity.

Many organizations have started embracing agile
application techniques such as microservices architecture
and are now starting to see the benefits of that shift.
The approach described in this paper compliments and
accelerates agile development practices. We look to
bring the same concepts to bear on an enterprise’s API
strategy, their ESB infrastructure, and their approaches
to asynchronous communication over messages and
events. This enables them to achieve more effective ways
to manage and operate their integration services in their
private or public cloud.

This white paper is derived from an ebook that explores the
merits of what we refer to as Agile Integration - a container-
based, decentralized and microservices-aligned approach
for integration solutions that meets the demands of agility,
scalability and resilience required by digital transformation.

4

https://www.ibm.com/account/reg/us-en/signup?formid=urx-34200&cm_sp=CAS-_-US-_-W5GG13RN

Integration Has Changed
IDC estimates that spending on digital transformation initiatives will
represent a $20 trillion market opportunity over the next 5 years. What’s
behind this staggering explosion of spending? The ever-present, ever-growing
need to build new customer experiences through connected experiences
across a network of applications that leverage data of all types.

That’s no easy task – bringing together processes and information sources at
the right time and in the right context is difficult at best, particularly when you
consider the aggressive adoption of SaaS business applications. New data
sources need to be injected into business processes to create competitive
differentiation.

The Value of Application Integration for Digital
Transformation
When you consider your agenda for building new customer experiences and
focus on how data is accessed and made available for the services and APIs
that power these initiatives, you can see several significant benefits that
application integration brings to the table:

The integration landscape is changing to keep up with enterprise and
marketplace computing demands, but how did we get from SOA and ESBs to
a modern, containerized, agile approach to integration?

To drive new customer

experiences organizations

must tap into an ever-

growing set of applications,

processes and information

sources – all which

significantly expand the

enterprise’s need for and

investment in integration

capabilities.

1IDC MaturityScape Benchmark: Digital Transformation Worldwide, 2017, Shawn Fitzgerald.

Agile Integration: Container-Based and Microservices-Aligned Lightweight Integration Runtimes

5

Effectively addressing disparity – Access data from any system in any
format and build homogeneity from it, no matter how diverse your multicloud
landscape grows.

Expertise of the endpoints - Modern integration includes smarts around
complex protocols and data formats, but it also incorporates intelligence
about the actual objects, business and functions within the end systems.

Innovation through data – Applications owe much of their innovation to their
opportunity to combine data beyond their boundaries and create meaning
from it, a trait particularly visible in microservices architecture.

Enterprise-grade artifacts – Integration flows inherit a tremendous amount
of value from the runtime, which includes enterprise-grade features for error
recovery, fault tolerance, log capture, performance analysis, and much more.

The Journey So Far – SOA and the ESB pattern
Before we can look forward to the future of agile integration, we need to
understand what came before. SOA (service oriented architecture) patterns
emerged at the start of the millennium, and at first the wide acceptance
of the standards SOA was built upon heralded a bright future where every
system could discover and talk to any other system via synchronous exposure
patterns.

This was typically implemented in the form of the ESB (enterprise service
bus) – an architectural pattern that was aimed at providing synchronous
connectivity to backend systems typically over web services. While many
enterprises successfully implemented the ESB pattern, it became something
of a victim of its own success.

The result was that creation of services by this specialist SOA team
sometimes became a bottleneck for projects rather than the enabler that
it was intended to be. This typically gave the centralized ESB pattern a bad
name by association.

All that said, the centralized ESB pattern does bring some benefits, especially
if they have a highly skilled integration team with a low attrition rate, and
who receive a predictable and manageable number of new integration
requirements. A single, centralized ESB certainly simplifies consistency and
governance of implementation. However, many organizations have more
fluid and dynamic requirements to manage, and are also under pressure
to implement integration using similar cloud native technologies and agile
methods as are being used in other parts of the organization. A case in point
is the move to microservices architecture typically found in the application
development space.

Agile Integration: Container-Based and Microservices-Aligned Lightweight Integration Runtimes

ESB patterns often formed a single infrastructure for the whole enterprise,
with tens or hundreds of integrations installed on a production server
cluster. Although heavy centralization isn’t required by the ESB pattern,
the implemented topologies almost always fell prey to it.

Centralized ESB patterns often failed to deliver the significant savings
companies were hoping for. Few interfaces could be re-used from one
project to another, yet the creation and maintenance of interfaces was
prohibitively expensive for any one project to take on.

SOA was more complex than just the implementation of an ESB,
particularly around who would fund an enterprise-wide program. Cross-
enterprise initiatives like SOA and its underlying ESB struggled to find
funding, and often that funding only applied to services that would be
reusable enough to cover their creation cost.

6

Service oriented architecture (SOA) vs
microservice architecture

SOA and microservices architecture share many words in common, but they
are in fact completely separate concepts.

Service-oriented architecture and the associated ESB pattern is an
enterprise-wide initiative to make the data and functions in systems of record
readily available to new applications. We create re-usable, synchronous
interfaces such as web services and RESTful APIs to expose the systems of
record, such that new innovative applications can be created more quickly by
incorporating data from multiple systems in real time.

Microservices architecture, on the other hand, is a way of writing an individual
application as a set of smaller (microservice) components in a way that
makes that application more agile, scalable, and resilient.
So in summary, service oriented architecture is about real-time integration
between applications, whereas microservices architecture is about how we
build the internals of applications themselves.

Application Application

SOA relates to enterprise service exposure*

Microservice
Application

Microservices relate to
application architecture

Application

µService µService

µService µService

7

The Case for Agile Integration
Why have microservices concepts become so popular in the application
space? They represent an alternative approach to structuring applications.
Rather than an application being a large silo of code running on the same
server, the application is designed as a collection of smaller, completely
independently-running components.

Microservices architecture enables three critical benefits:

1. Greater agility – Microservices are small enough to be understood
completely in isolation and changed independently.
2. Elastic scalability – Their resource usage can be fully tied into the
business model.
3. Discrete resilience – With suitable decoupling, changes to one
microservice do not affect others at runtime.

With those benefits in mind, what would it look like if we re-imagined
integration, which is typically deployed in centralized silos, with a new
perspective based on microservices architecture? That’s what we call an
“Agile Integration.”

There are three related, but separate aspects to agile integration:

Aspect 1: Fine-grained integration deployment.
What might we gain by breaking out the integrations in the siloed ESB into separate
runtimes that could be maintained and scaled independently? What is the simplest
way that these discrete integrations be made consistently available across and
beyond the enterprise via APIs and events?

Aspect 2: Decentralized integration ownership.
How should we adjust the organizational structure to better leverage a more
autonomous approach, giving application teams more control over the creation and
exposure of their own integrations?

Aspect 3: Cloud native integration infrastructure.
How can we best leverage the container-based infrastructure that underpins cloud
native applications, to provides productivity, operational consistency, and portability
for both applications an integrations across a hybrid and multi-cloud landscape.

Agile integration is

defined as “a container-

based, decentralized

and microservices-

aligned architecture for

integration solutions.”

API

API API

API API

API

API

API

Traditional application integration
(centrally provisioned and administered silo) Agile integration architecture

A. Fine-grained deployment
B. Decentralized ownership
C. Cloud native infrastructure

Agile Integration: Container-Based and Microservices-Aligned Lightweight Integration Runtimes

8

Aspect 1: Fine-grained Integration Deployment

Traditional integration is characterized by the heavily centralized deployment
of integrations n the ESB pattern. Here, all integrations are deployed to a
single heavily nurtured (HA) pair of integration servers has been shown to
introduce a bottleneck for projects. Any deployment to the shared servers
runs the risk of destabilizing existing critical interfaces. No individual project
can choose to upgrade the version of the integration middleware to gain
access to new features.

Using the same concepts as microservice architecture, we could break up
the enterprise-wide ESB into smaller, more manageable and dedicated
pieces. Perhaps in some cases we can even get down to one runtime for
each interface we expose. These “fine-grained integration deployment”
patterns provide specialized, right-sized containers, offering improved agility,
scalability and resilience, and look very different to the centralized ESB
patterns of the past. Figure 1 demonstrates in simple terms how a centralized
ESB differs from fine-grained integration deployment.

Fine-grained integration deployment draws on the benefits of a microservices
architecture. Let’s revisit what we listed as microservices benefits in light of
fine-grained integration deployment:

Consumers

Fine-grained
integration
deployment

Centralized
ESB

Providers

Integrations
Simplified comparison
of a centralized ESB to
fine-grained integration
deployment

Learn more about
fine-grained
deployment in our
comprehensive Agile
Integration handbook,
available now for
download.

Download

Agility: Different teams can work on integrations independently without
deferring to a centralized group or infrastructure that can quickly become
a bottleneck. Individual integration flows can be changed, rebuilt, and
deployed independently of other flows, enabling safer application of changes
and maximizing speed to production.

Scalability: Individual flows can be scaled on their own, allowing you to take
advantage of efficient elastic scaling of cloud infrastructures.

Resilience: Isolated integration flows that are deployed in separate
containers cannot affect one another by stealing shared resources, such as
memory, connections, or CPU.

9

https://www.ibm.com/account/reg/us-en/signup?formid=urx-34200&cm_sp=CAS-_-US-_-W5GG13RN
https://www.ibm.com/account/reg/us-en/signup?formid=urx-34200&cm_sp=CAS-_-US-_-W5GG13RN

Aspect 2: Decentralized integration ownership

A significant challenge faced by service-oriented architecture was the way
that it tended to force the creation of centralized integration teams and
infrastructure to implement the service layer.

This created ongoing friction in the pace at which projects could run since
they always had the central integration team as a dependency. The central
team knew their integration technology well, but often didn’t understand the
applications they were integrating, so translating requirements could be slow
and error prone.

Many organizations would have preferred the application teams own the
creation of their own services, but the technology and infrastructure of the
time didn’t enable that.

The move to fine-grained integration deployment opens a door such
that ownership of the creation and maintenance of integrations can also
be distributed out to the application teams. It’s not unreasonable for
business application teams to take on integration work, streamlining the
implementation of new integrations.

Furthermore, API management has matured to the point where application
teams can easily manage the exposure of their own APIs, again without
resorting to separate centralized integration team.

Microservices design patterns often prefer to increase decoupling by
receiving event streams of data and building localized data representations
rather than always going via API calls to retrieve data in real time. Agile
integration also considers how best to enable teams to publish and consume
event streams both within and beyond application boundaries.

Aspect 3: Cloud-native integration infrastructure

Integration runtimes have changed dramatically in recent years. So much
so that these lightweight runtimes can be used in truly cloud-native ways.
By this we are referring to their ability to hand off the burden of many of
their previously proprietary mechanisms for cluster management, scaling,
availability and to the cloud platform in which they are running.

This entails a lot more than just running them in a containerized environment.
It means they have to be able to function as “cattle not pets,” making best
use of the orchestration capabilities such as Kubernetes and many other
common cloud standard frameworks.

Learn more about how
decentralized ownership
can help you modernize
your integration with
our full Agile Integration
handbook.

Agile Integration: Container-Based and Microservices-Aligned Lightweight Integration Runtimes

Download

10

https://www.ibm.com/account/reg/us-en/signup?formid=urx-34200&cm_sp=CAS-_-US-_-W5GG13RN
https://www.ibm.com/account/reg/us-en/signup?formid=urx-34200&cm_sp=CAS-_-US-_-W5GG13RN

Clearly, Agile Integration requires that the integration topology be deployed
very differently. A key aspect of that is a modern integration runtime that
can be run in a container-based environment and is well suited to cloud-
native deployment techniques. Modern integration runtimes are almost
unrecognizable from their historical peers. Let’s have a look at some of those
differences:

Adopting a “cattle approach”

impacts the ways in which your

DevOps teams will interact

with the environment and

the solution overall, create

increasing efficiencies as

more solutions are moved to

lightweight architectures.

Fast lightweight runtime: They run in containers such as Docker and are
sufficiently lightweight that they can be started and stopped in seconds
and can be easily administered by orchestration frameworks such as
Kubernetes.

Dependency free: They no longer require databases or message queues,
although obviously, they are very adept at connecting to them if they
need to.

File system based installation: They can be installed simply by laying
their binaries out on a file system and starting them up—ideal for the
layered file systems of Docker images.

DevOps tooling support: The runtime should be continuous integration
and deployment-ready. Script and property file-based install, build,
deploy, and configuration to enable “infrastructure as code” practices.
Template scripts for standard build and deploy tools should be provided to
accelerate inclusion into DevOps pipelines.

API-first: The primary communication protocol should be RESTful
APIs. Exposing integrations as RESTful APIs should be trivial and based
upon common conventions such as the Open API specification. Calling
downstream RESTful APIs should be equally trivial, including discovery via
definition files.

Digital connectivity: In addition to the rich enterprise connectivity that
has always been provided by integration runtimes, they must also connect
to modern resources. For example, NoSQL databases (MongoDb and
Cloudant etc.), and messaging services such as Kafka. Furthermore, they
need access to a rich catalogue of application intelligent connectors for
SaaS (software as a service) applications such as Salesforce.

Continuous delivery: Continuous delivery is enabled by command-
line interfaces and template scripts that mesh into standard DevOps
pipeline tools. This further reduces the knowledge required to implement
interfaces and increases the pace of delivery.

Enhanced tooling: Enhanced tooling for integration means most
interfaces can be built by configuration alone, often by individuals with
no integration background. With the addition of templates for common
integration patterns, integration best practices are burned into the tooling,
further simplifying the tasks. Deep integration specialists are less often
required, and some integration can potentially be taken on by application
teams as we will see in the next section on decentralized integration.

11

Modern integration runtimes are well suited to the three aspects of an agile
integration methodology: fine-grained deployment, decentralized ownership,
and true cloud-native infrastructure.

Along with integration runtimes becoming more lightweight and container
friendly, we also see API management and messaging/eventing infrastructure
moving to container-based deployment. This is generally in order to benefit
from the operational constancy provided by orchestration platforms such
as Kubernetes that provides auto scaling, load-balancing, deployment,
internal routing, reinstatement and more in a standardized way, significantly
simplifying the administration of the platform.

Agile Integration for the Integration Platform
Throughout this paper, we have been focused on the application integration
features as deployed in an agile integration architecture. However, many
enterprise solutions can only be solved by applying several critical integration
capabilities. An integration platform (or what some analysts refer to as a
“hybrid integration platform”) brings together these capabilities so that
organizations can build business solutions in a more efficient and consistent
way.

Many industry specialists agree on the value of this integration platform.
Gartner notes:

The hybrid integration platform (HIP) is a framework of on-premises and
cloud-based integration and governance capabilities that enables differently
skilled personas (integration specialists and non-specialists) to support a
wide range of integration use cases.… Application leaders responsible for
integration should leverage the HIP capabilities framework to modernize
their integration strategies and infrastructure, so they can address the
emerging use cases for digital business.

One of the key things that Gartner notes is that the integration platform
allows multiple people from across the organization to work in user
experiences that best fits their needs. This means that business users can
be productive in a simpler experience that guides them through solving
straightforward problems, while IT specialists have expert levels of control to
deal with the more complex enterprise scenarios. These users can then work
together through reuse of the assets that have been shared; while preserving
governance across the whole.

Satisfying the emerging use cases of the digital transformation is as
important as supporting the various user communities. The bulk of this paper
will explore these emerging use cases, but first we should further elaborate
on the key capabilities that must be part of the integration platform.

2Hype Cycle for Application Infrastructure and Integration, 2017, Elizabeth Golluscio.

Agile Integration: Container-Based and Microservices-Aligned Lightweight Integration Runtimes

12

Read Ovums latest
report on the factors
driving hybrid integration
platform adoption.

Download

https://www.ibm.com/account/reg/us-en/signup?formid=urx-34200&cm_sp=CAS-_-US-_-W5GG13RN
https://www.ibm.com/account/reg/us-en/signup?formid=urx-39103&cm_sp=CAS-_-US-_-W5GG13RN

IBM Cloud Pak for Integration
IBM Cloud Integration brings together the key set of integration capabilities
into a coherent platform that is simple, fast and trusted. It allows you to
easily build powerful integrations and APIs in minutes, provides leading
performance and scalability, and offers unmatched end-to-end capabilities
with enterprise-grade security. IBM Cloud Pak for Integration is built on the
open source Kubernetes platform for container orchestration.

IBM Cloud Pak for Integration is the most complete hybrid integration
platform in the industry including all of the key integration capabilities your
team needs:

Application and Data Integration
Connects applications and data sources on-premises or in the cloud, in order
to coordinate exchange business information so that data is available when
and where needed.

API Lifecycle
Exposes and manages business services as reusable APIs for select
developer communities both internal and external to your organization.
Organizations adopt an API strategy to accelerate how effectively they can
share their unique data and services assets to then fuel new applications and
new business opportunities.

Enterprise Messaging
Ensures real-time information is available from anywhere at anytime by
providing reliable message delivery without message loss, duplication or
complex recovery in the event of system or network issue.

High Speed Data Transfer
Move huge amounts of data between on-premises and cloud or cloud-to-
cloud rapidly and predictably with enhanced levels of security. Facilitates
how quickly organizations can adopt cloud platforms when data is very large.

Secure Gateway
Extend Connectivity and Integration beyond the enterprise with DMZ-ready
edge capabilities that protect APIs, the data they move, and the systems
behind them

13

Through this teaser handbook, hopefully you’ve
gotten a broader perspective of the various critical
capabilities required as part of an integration
platform, a sense of the requirements for those
capabilities to work together, and an appreciation
of how an agile approach to integration can be
adopted to enable greater agility, scalability and
resilience for the platform.

If you’d like to learn more about IBM Cloud Pak
for Integration, please visit:

Make sure to download the comprehensive
handbook

Download

https://www.ibm.com/cloud/cloud-pak-for-integration

Agile Integration: Container-Based and Microservices-Aligned Lightweight Integration Runtimes

https://www.ibm.com/account/reg/us-en/signup?formid=urx-34200&cm_sp=CAS-_-US-_-W5GG13RN
https://www.ibm.com/cloud/cloud-pak-for-integration?cm_sp=CAS-_-US-_-W5GG13RN

